High precision measurements of weak neutral current and charged current processes and of the properties of the Z and W bosons have established the standard electroweak model as correct down to a distance scale of 10-16 cm, and are a sensitive probe of possible underlying physics. In this book, all aspects of the program are considered in detail, including the structure of the standard model, radiative corrections, high precision experiments, and their implications. The major classes of experiments are surveyed, covering the experiments themselves, the data analysis, results, and prospects.This volume is a detailed reference for theoretical and experimental researchers, as well as an introductory text for advanced students.
This proceedings focuses on the theoretical and experimental status of the Standard Model of the strong and electroweak interactions. They are discussed in the light of recent experimental results from high energy e+e- and hadron colliders.
Second in a series of international workshops in high energy physics, WHEPP II dealt with front- line areas of particle phenomenology with an eye to new physics with planned accelerators. Among the topics discussed were: (a) collider physics and structure functions, (b) B physics, hadronic matrix elements and lattice results, (c) new particle search and model building, (d) LEP results and radiative corrections to electro-weak processes and (e) baryon number violation in electroweak processes.
EPS - High Energy Physics '89 presents the proceeding of the International Europhysics Conference on High Energy physics, held in Madrid, Spain, on September 6–13, 1989. This book outlines several topics on the interface between cosmology/astrophysics and particle physics. Organized into two parts encompassing 181 chapters, this compilation of papers begins with an overview of the implications of the cosmic light element abundances. This text then examines the various aspects of lattice field theory. Other chapters consider the theoretical evidence of a fundamental length in string theory and outline the main features of the higher order corrections to the heavy quark inclusive cross section. This book discusses as well the theory of heavy quark production in hadron collision. The final chapter deals with the idea of low-energy supersymmetry, which relates the scale of supersymmetry breaking to the origin and stability of the electroweak scale. This book is a valuable resource for astrophysicists, physicists, and scientists.
Scattering is the collision of two objects that results in a change of trajectory and energy. For example, in particle physics, such as electrons, photons, or neutrons are "scattered off" of a target specimen, resulting in a different energy and direction. In the field of electromagnetism, scattering is the random diffusion of electromagnetic radiation from air masses is an aid in the long-range sending of radio signals over geographic obstacles such as mountains. This type of scattering, applied to the field of acoustics, is the spreading of sound in many directions due to irregularities in the transmission medium. Volume I of Scattering will be devoted to basic theoretical ideas, approximation methods, numerical techniques and mathematical modeling. Volume II will be concerned with basic experimental techniques, technological practices, and comparisons with relevant theoretical work including seismology, medical applications, meteorological phenomena and astronomy. This reference will be used by researchers and graduate students in physics, applied physics, biophysics, chemical physics, medical physics, acoustics, geosciences, optics, mathematics, and engineering. This is the first encyclopedic-range work on the topic of scattering theory in quantum mechanics, elastodynamics, acoustics, and electromagnetics. It serves as a comprehensive interdisciplinary presentation of scattering and inverse scattering theory and applications in a wide range of scientific fields, with an emphasis, and details, up-to-date developments. Scattering also places an emphasis on the problems that are still in active current research. The first interdisciplinary reference source on scattering to gather all world expertise in this technique Covers the major aspects of scattering in a common language, helping to widening the knowledge of researchers across disciplines The list of editors, associate editors and contributors reads like an international Who's Who in the interdisciplinary field of scattering
This book presents proceedings from the XXIV DAE-BRNS High Energy Physics (HEP) Symposium 2020, held at the National Institute of Science Education and Research, Jatni, Odisha, India. The contributions cover a variety of topics in particle physics, astroparticle physics, cosmology and related areas from both experimental and theoretical perspectives, namely (1) Standard Model Physics, (2) Beyond Standard Model Physics, (3) Relativistic Heavy-Ion Physics & QCD, (4) Neutrino Physics, (5) Particle Astrophysics & Cosmology, (6) Detector Development Future Facilities and Experiments, (7) Formal Theory, (8) Societal Applications: Medical Physics, Imaging, etc.