Quantum Theory for Mathematicians

Quantum Theory for Mathematicians

Author: Brian C. Hall

Publisher: Springer Science & Business Media

Published: 2013-06-19

Total Pages: 566

ISBN-13: 1461471168

DOWNLOAD EBOOK

Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to physics will enjoy the book's conversational tone as they delve into such topics as the Hilbert space approach to quantum theory; the Schrödinger equation in one space dimension; the Spectral Theorem for bounded and unbounded self-adjoint operators; the Stone–von Neumann Theorem; the Wentzel–Kramers–Brillouin approximation; the role of Lie groups and Lie algebras in quantum mechanics; and the path-integral approach to quantum mechanics. The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces. The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization.


Quantum Mechanics for Mathematicians

Quantum Mechanics for Mathematicians

Author: Leon Armenovich Takhtadzhi͡an

Publisher: American Mathematical Soc.

Published: 2008

Total Pages: 410

ISBN-13: 0821846302

DOWNLOAD EBOOK

Presents a comprehensive treatment of quantum mechanics from a mathematics perspective. Including traditional topics, like classical mechanics, mathematical foundations of quantum mechanics, quantization, and the Schrodinger equation, this book gives a mathematical treatment of systems of identical particles with spin.


Quantum Field Theory: A Tourist Guide for Mathematicians

Quantum Field Theory: A Tourist Guide for Mathematicians

Author: Gerald B. Folland

Publisher: American Mathematical Soc.

Published: 2021-02-03

Total Pages: 325

ISBN-13: 1470464837

DOWNLOAD EBOOK

Quantum field theory has been a great success for physics, but it is difficult for mathematicians to learn because it is mathematically incomplete. Folland, who is a mathematician, has spent considerable time digesting the physical theory and sorting out the mathematical issues in it. Fortunately for mathematicians, Folland is a gifted expositor. The purpose of this book is to present the elements of quantum field theory, with the goal of understanding the behavior of elementary particles rather than building formal mathematical structures, in a form that will be comprehensible to mathematicians. Rigorous definitions and arguments are presented as far as they are available, but the text proceeds on a more informal level when necessary, with due care in identifying the difficulties. The book begins with a review of classical physics and quantum mechanics, then proceeds through the construction of free quantum fields to the perturbation-theoretic development of interacting field theory and renormalization theory, with emphasis on quantum electrodynamics. The final two chapters present the functional integral approach and the elements of gauge field theory, including the Salam–Weinberg model of electromagnetic and weak interactions.


Lectures on Quantum Mechanics for Mathematics Students

Lectures on Quantum Mechanics for Mathematics Students

Author: L. D. Faddeev

Publisher: American Mathematical Soc.

Published: 2009

Total Pages: 250

ISBN-13: 082184699X

DOWNLOAD EBOOK

Describes the relation between classical and quantum mechanics. This book contains a discussion of problems related to group representation theory and to scattering theory. It intends to give a mathematically oriented student the opportunity to grasp the main points of quantum theory in a mathematical framework.


Quantum Theory

Quantum Theory

Author: Peter Bongaarts

Publisher: Springer

Published: 2014-12-01

Total Pages: 460

ISBN-13: 3319095617

DOWNLOAD EBOOK

This book was inspired by the general observation that the great theories of modern physics are based on simple and transparent underlying mathematical structures – a fact not usually emphasized in standard physics textbooks – which makes it easy for mathematicians to understand their basic features. It is a textbook on quantum theory intended for advanced undergraduate or graduate students: mathematics students interested in modern physics, and physics students who are interested in the mathematical background of physics and are dissatisfied with the level of rigor in standard physics courses. More generally, it offers a valuable resource for all mathematicians interested in modern physics, and all physicists looking for a higher degree of mathematical precision with regard to the basic concepts in their field.


Quantum Fields and Strings: A Course for Mathematicians

Quantum Fields and Strings: A Course for Mathematicians

Author: Pierre Deligne

Publisher: American Mathematical Society

Published: 1999-10-25

Total Pages: 801

ISBN-13: 0821820133

DOWNLOAD EBOOK

A run-away bestseller from the moment it hit the market in late 1999. This impressive, thick softcover offers mathematicians and mathematical physicists the opportunity to learn about the beautiful and difficult subjects of quantum field theory and string theory. Cover features an intriguing cartoon that will bring a smile to its intended audience.


Fundamental Mathematical Structures of Quantum Theory

Fundamental Mathematical Structures of Quantum Theory

Author: Valter Moretti

Publisher: Springer

Published: 2019-06-20

Total Pages: 345

ISBN-13: 3030183467

DOWNLOAD EBOOK

This textbook presents in a concise and self-contained way the advanced fundamental mathematical structures in quantum theory. It is based on lectures prepared for a 6 months course for MSc students. The reader is introduced to the beautiful interconnection between logic, lattice theory, general probability theory, and general spectral theory including the basic theory of von Neumann algebras and of the algebraic formulation, naturally arising in the study of the mathematical machinery of quantum theories. Some general results concerning hidden-variable interpretations of QM such as Gleason's and the Kochen-Specker theorems and the related notions of realism and non-contextuality are carefully discussed. This is done also in relation with the famous Bell (BCHSH) inequality concerning local causality. Written in a didactic style, this book includes many examples and solved exercises. The work is organized as follows. Chapter 1 reviews some elementary facts and properties of quantum systems. Chapter 2 and 3 present the main results of spectral analysis in complex Hilbert spaces. Chapter 4 introduces the point of view of the orthomodular lattices' theory. Quantum theory form this perspective turns out to the probability measure theory on the non-Boolean lattice of elementary observables and Gleason's theorem characterizes all these measures. Chapter 5 deals with some philosophical and interpretative aspects of quantum theory like hidden-variable formulations of QM. The Kochen-Specker theorem and its implications are analyzed also in relation BCHSH inequality, entanglement, realism, locality, and non-contextuality. Chapter 6 focuses on the algebra of observables also in the presence of superselection rules introducing the notion of von Neumann algebra. Chapter 7 offers the idea of (groups of) quantum symmetry, in particular, illustrated in terms of Wigner and Kadison theorems. Chapter 8 deals with the elementary ideas and results of the so called algebraic formulation of quantum theories in terms of both *-algebras and C*-algebras. This book should appeal to a dual readership: on one hand mathematicians that wish to acquire the tools that unlock the physical aspects of quantum theories; on the other physicists eager to solidify their understanding of the mathematical scaffolding of quantum theories.


Lectures on Quantum Mechanics

Lectures on Quantum Mechanics

Author: Philip L. Bowers

Publisher: Cambridge University Press

Published: 2020-09-17

Total Pages: 585

ISBN-13: 1108429769

DOWNLOAD EBOOK

A leisurely but mathematically honest presentation of quantum mechanics for graduate students in mathematics with an interest in physics.


Mathematical Foundations of Quantum Mechanics

Mathematical Foundations of Quantum Mechanics

Author: John von Neumann

Publisher: Princeton University Press

Published: 1955

Total Pages: 462

ISBN-13: 9780691028934

DOWNLOAD EBOOK

A revolutionary book that for the first time provided a rigorous mathematical framework for quantum mechanics. -- Google books