Quantum Oscillators

Quantum Oscillators

Author: Paul Blaise

Publisher: John Wiley & Sons

Published: 2011-08-24

Total Pages: 607

ISBN-13: 1118018028

DOWNLOAD EBOOK

An invaluable reference for an overall but simple approach to the complexity of quantum mechanics viewed through quantum oscillators Quantum oscillators play a fundamental role in many areas of physics; for instance, in chemical physics with molecular normal modes, in solid state physics with phonons, and in quantum theory of light with photons. Quantum Oscillators is a timely and visionary book which presents these intricate topics, broadly covering the properties of quantum oscillators which are usually dispersed in the literature at varying levels of detail and often combined with other physical topics. These properties are: time-independent behavior, reversible dynamics, thermal statistical equilibrium and irreversible evolution toward equilibrium, together with anharmonicity and anharmonic couplings. As an application of these intricate topics, special attention is devoted to infrared lineshapes of single and complex (undergoing Fermi resonance or Davydov coupling) damped H-bonded systems, providing key insights into this rapidly evolving area of chemical science. Quantum Oscillators is a long overdue update in the literature surrounding quantum oscillators, and serves as an excellent supplementary text in courses on IR spectroscopy and hydrogen bonding. It is a must-have addition to the library of any graduate or undergraduate student in chemical physics.


Introduction to Classical and Quantum Harmonic Oscillators

Introduction to Classical and Quantum Harmonic Oscillators

Author: S. C. Bloch

Publisher: John Wiley & Sons

Published: 2013-03-29

Total Pages: 343

ISBN-13: 1118710827

DOWNLOAD EBOOK

From conch shells to lasers . harmonic oscillators, the timeless scientific phenomenon As intriguing to Galileo as they are to scientists today, harmonic oscillators have provided a simple and compelling paradigm for understanding the complexities that underlie some of nature's and mankind's most fascinating creations. From early string and wind instruments fashioned from bows and seashells to the intense precision of lasers, harmonic oscillators have existed in various forms, as objects of beauty and scientific use. And harmonic oscillation has endured as one of science's most fascinating concepts, key to understanding the physical universe and a linchpin in fields as diverse as mechanics, electromagnetics, electronics, optics, acoustics, and quantum mechanics. Complete with disk, Introduction to Classical and Quantum Harmonic Oscillators is a hands-on guide to understanding how harmonic oscillators function and the analytical systems used to describe them. Professionals and students in electrical engineering, mechanical engineering, physics, and chemistry will gain insight in applying these analytical techniques to even more complex systems. With the help of spreadsheets ready to run on Microsoft Excel (or easily imported to Quattro Pro or Lotus 1-2-3), users will be able to thoroughly and easily examine concepts and questions, of considerable difficulty and breadth, without painstaking calculation. The software allows users to imagine, speculate, and ask "what if .?" and then instantly see the answer. You're not only able to instantly visualize results but also to interface with data acquisition boards to import real-world information. The graphic capability of the software allows you to view your work in color and watch new results blossom as you change parameters and initial conditions. Introduction to Classical and Quantum Harmonic Oscillators is a practical, graphically enhanced excursion into the world of harmonic oscillators that lets the reader experience and understand their utility and unique contribution to scientific understanding. It also describes one of the enduring themes in scientific inquiry, begun in antiquity and with an as yet unimagined future.


Waves and Oscillations

Waves and Oscillations

Author: Walter Fox Smith

Publisher: Oxford University Press

Published: 2010-05-20

Total Pages: 416

ISBN-13: 019539349X

DOWNLOAD EBOOK

This lively textbook differs from others on the subject by its usefulness as a conceptual and mathematical preparation for the study of quantum mechanics, by its emphasis on a variety of learning tools aimed at fostering the student's self-awareness of learning, and by its frequent connections to current research.


University Physics

University Physics

Author: OpenStax

Publisher:

Published: 2016-11-04

Total Pages: 622

ISBN-13: 9781680920451

DOWNLOAD EBOOK

University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.


Harmonic Oscillators

Harmonic Oscillators

Author: Yilun Shang

Publisher:

Published: 2019

Total Pages: 214

ISBN-13: 9781536158113

DOWNLOAD EBOOK

"This book gathers state-of-the-art advances on harmonic oscillators including their types, functions, and applications. In Chapter 1, Neetik and Amlan have discussed the recent progresses of information theoretic tools in the context of free and confined harmonic oscillator. Confined quantum systems have provided appreciable interest in areas of physics, chemistry, biology, etc., since its inception. A particle under extreme pressure environment unfolds many fascinating, notable physical and chemical changes. The desired effect is achieved by reducing the spatial boundary from infinity to a finite region. Similarly, in the last decade, information measures were investigated extensively in diverse quantum problems, in both free and constrained situations. The most prominent amongst these are: Fisher information, Shannon entropy, Renyi entropy, Tsallis entropy, Onicescu energy and several complexities. Arguably, these are the most effective measures of uncertainty, as they do not make any reference to some specific points of a respective Hilbert space. These have been invoked to explain several physic-chemical properties of a system under investigation. Kullback Leibler divergence or relative entropy describes how a given probability distribution shifts from a reference distribution function. This characterizes a measure of discrimination between two states. In other words, it extracts the change of information in going from one state to another. In Chapter 2, Nabakumar, Subhasree, and Paulami have revisited classical-quantum correspondence in the context of linear Simple Harmonic Oscillator (SHO). According to Bohr's correspondence principle, quantum mechanically calculated results match with the classically expected results when quantum number is very high. Classical quantum correspondence may also be visualized in the limit when the action integral is much greater than Planck's constant. When de-Broglie wave length associated with a particle is much larger than system size, then quantum mechanical results also match with the classical results. In the context of dynamics, Ehrenfest equation of motion is used in quantum domain, which is analogous to classical Newton's equation of motion. SHO is one of the most important systems for several reasons. It is one of the few exactly solvable problems. Any stable molecular potential can be approximated by SHO near the equilibrium point. This builds the foundation for the understanding of complex modes of vibration in large molecules, the motion of atoms in a solid lattice, the theory of heat capacity, vibration motion of nuclei in molecule etc. The authors have revisited the common solution techniques and important properties of both classical and quantum linear SHO. Then they focused on probability distribution, quantum mechanical tunneling, classical and quantum dynamics of position, momentum and their actuations, viral theorems, etc. and also analyzed how quantum mechanical results finally tend to classical results in the high quantum number limit. In Chapter 3, Neeraj has discussed the nature of atomic motions, sometimes referred to as lattice vibrations. The lattice dynamics deals with the vibrations of the atoms inside the crystals. In order to write the dynamic equations of the motion of crystal atoms, we need to describe an inter-atomic interaction. Therefore, it is natural to start the study of the lattice dynamics with the case of small harmonic vibrations. The dynamics of one-dimensional and two-dimensional vibrations of monatomic and diatomic crystals can be understood by using the simple model forces based on harmonic approximation. This harmonic approximation is related to a simple ball-spring model. According to this model, each atom is coupled with the neighboring atoms by spring constants. The collective motion of atoms leads to a distinct traveling wave over the whole crystal, leading to the collective motion, so-called phonon. The simple ball-spring model enlightens us some of the significant common features of lattice dynamics that have been discussed throughout this chapter. Further, this chapter helps in understanding the quantization energy of a harmonic oscillation and the concept of phonon"--


A Theory of Spin Vortices in a Physical Vacuum Consisting of Quantum Oscillators

A Theory of Spin Vortices in a Physical Vacuum Consisting of Quantum Oscillators

Author: Liudmila Borisovna Boldyreva

Publisher: Cambridge Scholars Publishing

Published: 2021-04

Total Pages:

ISBN-13: 9781527564558

DOWNLOAD EBOOK

This book will be of interest not only to physics scholars who are studying the theoretical aspects of quantum mechanics, electromagnetism, superconductivity and superfluidity, but also to the more general reader. It explores the action of biologically active substances and low-intensity physical factors in ultra-low doses on biological systems, particularly the action of medicinal remedies in ultra-low doses (homeopathy), influence of the color and form of ambient bodies, and the so-called Twin Correlation.


Fluctuating Nonlinear Oscillators

Fluctuating Nonlinear Oscillators

Author: Mark Dykman

Publisher: Oxford University Press

Published: 2012-07-26

Total Pages: 446

ISBN-13: 019969138X

DOWNLOAD EBOOK

The book provides a unifying insight into a broad range of phenomena displayed by vibrational systems of current interest. The chapters complement each other to give an account of the major fundamental results and applications in quantum information, condensed matter physics, and engineering.


Einstein's Physics

Einstein's Physics

Author: Ta-Pei Cheng

Publisher: OUP Oxford

Published: 2013-01-31

Total Pages: 371

ISBN-13: 0191648760

DOWNLOAD EBOOK

Many regard Albert Einstein as the greatest physicist since Newton. What exactly did he do that is so important in physics? We provide an introduction to his physics at a level accessible to an undergraduate physics student. All equations are worked out in detail from the beginning. Einstein's doctoral thesis and his Brownian motion paper were decisive contributions to our understanding of matter as composed of molecules and atoms. Einstein was one of the founding fathers of quantum theory: his photon proposal through the investigation of blackbody radiation, his quantum theory of photoelectric effect and specific heat, his calculation of radiation fluctuation giving the first statement of wave-particle duality, his introduction of probability in the description of quantum radiative transitions, and finally the quantum statistics and Bose-Einstein condensation. Einstein's special theory of relativity gave us the famous E=mc2 relation and the new kinematics leading to the idea of the 4-dimensional spacetime as the arena in which physical events take place. Einstein's geometric theory of gravity, general relativity, extends Newton's theory to time-dependent and strong gravitational fields. It laid the ground work for the study of black holes and cosmology. This is a physics book with material presented in the historical context. We do not stop at Einstein's discovery, but carry the discussion onto some of the later advances: Bell's theorem, quantum field theory, gauge theories and Kaluza-Klein unification in a spacetime with an extra spatial dimension. Accessibility of the material to a modern-day reader is the goal of our presentation. Although the book is written with primarily a physics readership in mind (it can also function as a textbook), enough pedagogical support material is provided that anyone with a solid background in introductory physics can, with some effort, understand a good part of this presentation.


Dissipative Processes in Tribology

Dissipative Processes in Tribology

Author: D. Dowson

Publisher: Elsevier

Published: 1994-08-05

Total Pages: 587

ISBN-13: 0080875912

DOWNLOAD EBOOK

This book discusses dissipative phenomena, in particular the origins of friction at all scales, in mechanics, physics and chemistry, encountered in all fields of tribology, from thick film lubrication to dry friction.