Semiconductor Quantum Optics

Semiconductor Quantum Optics

Author: Mackillo Kira

Publisher: Cambridge University Press

Published: 2011-11-17

Total Pages: 658

ISBN-13: 1139502514

DOWNLOAD EBOOK

The emerging field of semiconductor quantum optics combines semiconductor physics and quantum optics, with the aim of developing quantum devices with unprecedented performance. In this book researchers and graduate students alike will reach a new level of understanding to begin conducting state-of-the-art investigations. The book combines theoretical methods from quantum optics and solid-state physics to give a consistent microscopic description of light-matter- and many-body-interaction effects in low-dimensional semiconductor nanostructures. It develops the systematic theory needed to treat semiconductor quantum-optical effects, such as strong light-matter coupling, light-matter entanglement, squeezing, as well as quantum-optical semiconductor spectroscopy. Detailed derivations of key equations help readers learn the techniques and nearly 300 exercises help test their understanding of the materials covered. The book is accompanied by a website hosted by the authors, containing further discussions on topical issues, latest trends and publications on the field. The link can be found at www.cambridge.org/9780521875097.


Quantum Optics with Semiconductor Nanostructures

Quantum Optics with Semiconductor Nanostructures

Author: Frank Jahnke

Publisher: Elsevier

Published: 2012-07-16

Total Pages: 607

ISBN-13: 0857096397

DOWNLOAD EBOOK

An understanding of the interaction between light and matter on a quantum level is of fundamental interest and has many applications in optical technologies. The quantum nature of the interaction has recently attracted great attention for applications of semiconductor nanostructures in quantum information processing. Quantum optics with semiconductor nanostructures is a key guide to the theory, experimental realisation, and future potential of semiconductor nanostructures in the exploration of quantum optics.Part one provides a comprehensive overview of single quantum dot systems, beginning with a look at resonance fluorescence emission. Quantum optics with single quantum dots in photonic crystal and micro cavities are explored in detail, before part two goes on to review nanolasers with quantum dot emitters. Light-matter interaction in semiconductor nanostructures, including photon statistics and photoluminescence, is the focus of part three, whilst part four explores all-solid-state quantum optics, crystal nanobeam cavities and quantum-dot microcavity systems. Finally, part five investigates ultrafast phenomena, including femtosecond quantum optics and coherent optoelectronics with quantum dots.With its distinguished editor and international team of expert contributors, Quantum optics with semiconductor nanostructures is an essential guide for all those involved with the research, development, manufacture and use of semiconductors nanodevices, lasers and optical components, as well as scientists, researchers and students. - A key guide to the theory, experimental realisation, and future potential of semiconductor nanostructures in the exploration of quantum optics - Chapters provide a comprehensive overview of single quantum dot systems, nanolasers with quantum dot emitters, and light-matter interaction in semiconductor nanostructures - Explores all-solid-state quantum optics, crystal nanobeam cavities and quantum-dot microcavity systems, and investigates ultrafast phenomena


Quantum Coherence Correlation and Decoherence in Semiconductor Nanostructures

Quantum Coherence Correlation and Decoherence in Semiconductor Nanostructures

Author: Toshihide Takagahara

Publisher: Academic Press

Published: 2003-02-10

Total Pages: 508

ISBN-13: 0080525121

DOWNLOAD EBOOK

Semiconductor nanostructures are attracting a great deal of interest as the most promising device with which to implement quantum information processing and quantum computing. This book surveys the present status of nanofabrication techniques, near field spectroscopy and microscopy to assist the fabricated nanostructures. It will be essential reading for academic and industrial researchers in pure and applied physics, optics, semiconductors and microelectronics. - The first up-to-date review articles on various aspects on quantum coherence, correlation and decoherence in semiconductor nanostructures


Electron and Photon Confinement in Semiconductor Nanostructures

Electron and Photon Confinement in Semiconductor Nanostructures

Author: BenoƮt Deveaud

Publisher: IOS Press

Published: 2003

Total Pages: 584

ISBN-13: 9781586033521

DOWNLOAD EBOOK

The purpose of this course was to give an overview of the physics of artificial semiconductor structures confining electrons and photons. It furnishes the background for several applications in particular in the domain of optical devices, lasers, light emitting diodes or photonic crystals. The effects related to the microactivity polaritons, which are mixed electromagnetic radiation-exciton states inside a semiconconductor microactivity are covered. The study of the characteristics of such states shows strong relations with the domain of cavity quantum electrodynamics and thus with the investigation of some fundamental theoretical concepts.


Optical Spectroscopy of Semiconductor Nanostructures

Optical Spectroscopy of Semiconductor Nanostructures

Author: Eougenious L. Ivchenko

Publisher: Alpha Science Int'l Ltd.

Published: 2005

Total Pages: 444

ISBN-13: 9781842651506

DOWNLOAD EBOOK

This volume looks at optical spectroscopy of semiconductir nanostructures. Some of the topics it covers include: kingdom of nanostructures; quantum confinement in low-dimensional systems; resonant light reflection; and transmission and absorption.


Coherent Semiconductor Optics

Coherent Semiconductor Optics

Author: Torsten Meier

Publisher: Springer Science & Business Media

Published: 2007-02-13

Total Pages: 322

ISBN-13: 3540325557

DOWNLOAD EBOOK

This book introduces the basic theoretical concepts required for the analysis of the optical response of semiconductor systems in the coherent regime. It is the most instructive textbook on the theory and optical effects of semiconductors. The entire presentation is based on a one-dimensional tight-binding model. Starting with discrete-level systems, increasing complexity is added gradually to the model by including band-structure and many-particle interaction. Various linear and nonlinear optical spectra and temporal phenomena are studied. The analysis of many-body effects in nonlinear optical phenomena covers a major part of the book.


Nanostructures

Nanostructures

Author: Christophe Jean Delerue

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 313

ISBN-13: 3662089033

DOWNLOAD EBOOK

Provides the theoretical background needed by physicists, engineers and students to simulate nano-devices, semiconductor quantum dots and molecular devices. It presents in a unified way the theoretical concepts, the more recent semi-empirical and ab initio methods, and their application to experiments. The topics include quantum confinement, dielectric and optical properties, non-radiative processes, defects and impurities, and quantum transport. This guidebook not only provides newcomers with an accessible overview (requiring only basic knowledge of quantum mechanics and solid-state physics) but also provides active researchers with practical simulation tools.


Quantum Theory of the Optical and Electronic Properties of Semiconductors

Quantum Theory of the Optical and Electronic Properties of Semiconductors

Author: Hartmut Haug

Publisher: World Scientific Publishing Company

Published: 1994-10-31

Total Pages: 492

ISBN-13: 9813104783

DOWNLOAD EBOOK

This textbook presents the basic elements needed to understand and engage in research in semiconductor physics. It deals with elementary excitations in bulk and low-dimensional semiconductors, including quantum wells, quantum wires and quantum dots. The basic principles underlying optical nonlinearities are developed, including excitonic and many-body plasma effects. The fundamentals of optical bistability, semiconductor lasers, femtosecond excitation, optical Stark effect, semiconductor photon echo, magneto-optic effects, as well as bulk and quantum-confined Franz-Keldysh effects are covered. The material is presented in sufficient detail for graduate students and researchers who have a general background in quantum mechanics. Request Inspection Copy


Quantum Materials

Quantum Materials

Author: Detlef Heitmann

Publisher:

Published: 2010

Total Pages:

ISBN-13: 9783642105548

DOWNLOAD EBOOK

Semiconductor nanostructures are ideal systems to tailor the physical properties via quantum effects, utilizing special growth techniques, self-assembling, wet chemical processes or lithographic tools in combination with tuneable external electric and magnetic fields. Such systems are called "Quantum Materials".The electronic, photonic, and phononic properties of these systems are governed by size quantization and discrete energy levels. The charging is controlled by the Coulomb blockade. The spin can be manipulated by the geometrical structure, external gates and by integrating hybrid ferromagnetic emitters.This book reviews sophisticated preparation methods for quantum materials based on III-V and II-VI semiconductors and a wide variety of experimental techniques for the investigation of these interesting systems. It highlights selected experiments and theoretical concepts and gives such a state-of-the-art overview about the wide field of physics and chemistry that can be studied in these systems.


Semiconductor Nanocrystals

Semiconductor Nanocrystals

Author: Alexander L. Efros

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 277

ISBN-13: 1475736770

DOWNLOAD EBOOK

A physics book that covers the optical properties of quantum-confined semiconductor nanostructures from both the theoretical and experimental points of view together with technological applications. Topics to be reviewed include quantum confinement effects in semiconductors, optical adsorption and emission properties of group IV, III-V, II-VI semiconductors, deep-etched and self assembled quantum dots, nanoclusters, and laser applications in optoelectronics.