The Light Fantastic

The Light Fantastic

Author: I. R. Kenyon

Publisher: Oxford University Press, USA

Published: 2008

Total Pages: 654

ISBN-13: 019856645X

DOWNLOAD EBOOK

This thorough and self-contained introduction to modern optics covers, in full, the three components: ray optics, wave optics and quantum optics. Examples of modern applications in the current century are used extensively.


Principles of Laser Spectroscopy and Quantum Optics

Principles of Laser Spectroscopy and Quantum Optics

Author: Paul R. Berman

Publisher: Princeton University Press

Published: 2010-12-13

Total Pages: 538

ISBN-13: 1400837049

DOWNLOAD EBOOK

Principles of Laser Spectroscopy and Quantum Optics is an essential textbook for graduate students studying the interaction of optical fields with atoms. It also serves as an ideal reference text for researchers working in the fields of laser spectroscopy and quantum optics. The book provides a rigorous introduction to the prototypical problems of radiation fields interacting with two- and three-level atomic systems. It examines the interaction of radiation with both atomic vapors and condensed matter systems, the density matrix and the Bloch vector, and applications involving linear absorption and saturation spectroscopy. Other topics include hole burning, dark states, slow light, and coherent transient spectroscopy, as well as atom optics and atom interferometry. In the second half of the text, the authors consider applications in which the radiation field is quantized. Topics include spontaneous decay, optical pumping, sub-Doppler laser cooling, the Heisenberg equations of motion for atomic and field operators, and light scattering by atoms in both weak and strong external fields. The concluding chapter offers methods for creating entangled and spin-squeezed states of matter. Instructors can create a one-semester course based on this book by combining the introductory chapters with a selection of the more advanced material. A solutions manual is available to teachers. Rigorous introduction to the interaction of optical fields with atoms Applications include linear and nonlinear spectroscopy, dark states, and slow light Extensive chapter on atom optics and atom interferometry Conclusion explores entangled and spin-squeezed states of matter Solutions manual (available only to teachers)


Quantum Optics

Quantum Optics

Author: Marlan O. Scully

Publisher: Cambridge University Press

Published: 1997-09-04

Total Pages: 664

ISBN-13: 9780521435956

DOWNLOAD EBOOK

An in-depth and wide-ranging introduction to the field of quantum optics.


The Quantum Theory of Light

The Quantum Theory of Light

Author: Rodney Loudon

Publisher: OUP Oxford

Published: 2000-09-07

Total Pages: 454

ISBN-13: 0191589780

DOWNLOAD EBOOK

This third edition, like its two predecessors, provides a detailed account of the basic theory needed to understand the properties of light and its interactions with atoms, in particular the many nonclassical effects that have now been observed in quantum-optical experiments. The earlier chapters describe the quantum mechanics of various optical processes, leading from the classical representation of the electromagnetic field to the quantum theory of light. The later chapters develop the theoretical descriptions of some of the key experiments in quantum optics. Over half of the material in this third edition is new. It includes topics that have come into prominence over the last two decades, such as the beamsplitter theory, squeezed light, two-photon interference, balanced homodyne detection, travelling-wave attenuation and amplification, quantum jumps, and the ranges of nonliner optical processes important in the generation of nonclassical light. The book is written as a textbook, with the treatment as a whole appropriate for graduate or postgraduate students, while earlier chapters are also suitable for final- year undergraduates. Over 100 problems help to intensify the understanding of the material presented.


Optical Coherence and Quantum Optics

Optical Coherence and Quantum Optics

Author: Leonard Mandel

Publisher: Cambridge University Press

Published: 1995-09-29

Total Pages: 1200

ISBN-13: 9780521417112

DOWNLOAD EBOOK

This book presents a systematic account of optical coherence theory within the framework of classical optics, as applied to such topics as radiation from sources of different states of coherence, foundations of radiometry, effects of source coherence on the spectra of radiated fields, coherence theory of laser modes, and scattering of partially coherent light by random media.


Introduction to Modern Quantum Optics

Introduction to Modern Quantum Optics

Author: Jin-Sheng Peng

Publisher: World Scientific

Published: 1998

Total Pages: 584

ISBN-13: 9789810234485

DOWNLOAD EBOOK

This book discusses quantum optics and investigates the quantum properties of interactions between atoms and laser fields. It is divided into three parts. Part I introduces the elementary theory of the interaction between atoms and light. Part II provides a concentrated discussion on the quantum properties of light fields. Part III deals with the quantum dynamic properties of the atoms interacting with laser fields. This book can be used as a text for both graduate and undergraduate students; it will also benefit scientists who are interested in quantum optics and theoretical physics.


Semiconductor Quantum Optics

Semiconductor Quantum Optics

Author: Mackillo Kira

Publisher: Cambridge University Press

Published: 2011-11-17

Total Pages: 658

ISBN-13: 1139502514

DOWNLOAD EBOOK

The emerging field of semiconductor quantum optics combines semiconductor physics and quantum optics, with the aim of developing quantum devices with unprecedented performance. In this book researchers and graduate students alike will reach a new level of understanding to begin conducting state-of-the-art investigations. The book combines theoretical methods from quantum optics and solid-state physics to give a consistent microscopic description of light-matter- and many-body-interaction effects in low-dimensional semiconductor nanostructures. It develops the systematic theory needed to treat semiconductor quantum-optical effects, such as strong light-matter coupling, light-matter entanglement, squeezing, as well as quantum-optical semiconductor spectroscopy. Detailed derivations of key equations help readers learn the techniques and nearly 300 exercises help test their understanding of the materials covered. The book is accompanied by a website hosted by the authors, containing further discussions on topical issues, latest trends and publications on the field. The link can be found at www.cambridge.org/9780521875097.


Light Scattering Reviews 4

Light Scattering Reviews 4

Author: Alexander A. Kokhanovsky

Publisher: Springer Science & Business Media

Published: 2009-07-25

Total Pages: 516

ISBN-13: 354074276X

DOWNLOAD EBOOK

This fourth volume of Light Scattering Reviews is composed of three parts. The ?rstpartisconcernedwiththeoreticalandexperimentalstudiesofsinglelightsc- tering by small nonspherical particles. Light scattering by small particles such as, for instance, droplets in the terrestrial clouds is a well understood area of physical optics. On the other hand, exact theoretical calculations of light scattering p- terns for most of nonspherical and irregularly shaped particles can be performed only for the restricted values of the size parameter, which is proportional to the ratio of the characteristic size of the particle to the wavelength?. For the large nonspherical particles, approximations are used (e. g. , ray optics). The exact th- retical techniques such as the T-matrix method cannot be used for extremely large particles, such as those in ice clouds, because then the size parameter in the v- iblex=2?a/???,wherea is the characteristic size (radius for spheres), and the associated numerical codes become unstable and produce wrong answers. Yet another problem is due to the fact that particles in many turbid media (e. g. , dust clouds) cannot be characterized by a single shape. Often, refractive indices also vary. Because of problems with theoretical calculations, experimental (i. e. , la- ratory) investigations are important for the characterization and understanding of the optical properties of such types of particles. The ?rst paper in this volume, written by B. Gustafson, is aimed at the descr- tionofscaledanalogueexperimentsinelectromagneticscattering.


Light Scattering By Particles: Computational Methods

Light Scattering By Particles: Computational Methods

Author: Peter W Barber

Publisher: World Scientific

Published: 1990-07-09

Total Pages: 273

ISBN-13: 9814507431

DOWNLOAD EBOOK

This book presents the separation-of-variables and T-matrix methods of calculating the scattering of electromagnetic waves by particles. Analytical details and computer programs are provided for determining the scattering and absorption characteristics of the finite-thickness slab, infinite circular cylinder (normal incidence), general axisymmetric particle, and sphere.The computer programs are designed to generate data that is easy to graph and visualize, and test cases in the book illustrate the capabilities of the programs. The connection between the theory and the computer programs is reinforced by references in the computer programs to equations in the text. This cross-referencing will help the reader understand the computer programs, and, if necessary, modify them for other purposes.