Quantum Optics in Phase Space

Quantum Optics in Phase Space

Author: Wolfgang P. Schleich

Publisher: John Wiley & Sons

Published: 2015-12-11

Total Pages: 723

ISBN-13: 352780255X

DOWNLOAD EBOOK

Quantum Optics in Phase Space provides a concise introduction to the rapidly moving field of quantum optics from the point of view of phase space. Modern in style and didactically skillful, Quantum Optics in Phase Space prepares students for their own research by presenting detailed derivations, many illustrations and a large set of workable problems at the end of each chapter. Often, the theoretical treatments are accompanied by the corresponding experiments. An exhaustive list of references provides a guide to the literature. Quantum Optics in Phase Space also serves advanced researchers as a comprehensive reference book. Starting with an extensive review of the experiments that define quantum optics and a brief summary of the foundations of quantum mechanics the author Wolfgang P. Schleich illustrates the properties of quantum states with the help of the Wigner phase space distribution function. His description of waves ala WKB connects semi-classical phase space with the Berry phase. These semi-classical techniques provide deeper insight into the timely topics of wave packet dynamics, fractional revivals and the Talbot effect. Whereas the first half of the book deals with mechanical oscillators such as ions in a trap or atoms in a standing wave the second half addresses problems where the quantization of the radiation field is of importance. Such topics extensively discussed include optical interferometry, the atom-field interaction, quantum state preparation and measurement, entanglement, decoherence, the one-atom maser and atom optics in quantized light fields. Quantum Optics in Phase Space presents the subject of quantum optics as transparently as possible. Giving wide-ranging references, it enables students to study and solve problems with modern scientific literature. The result is a remarkably concise yet comprehensive and accessible text- and reference book - an inspiring source of information and insight for students, teachers and researchers alike.


Quantum Optics in Phase Space

Quantum Optics in Phase Space

Author: Wolfgang Schleich

Publisher: Wiley-VCH Verlag GmbH

Published: 2001

Total Pages: 695

ISBN-13: 9783527294350

DOWNLOAD EBOOK

Quantum Optics in Phase Space provides a concise introduction to the rapidly moving field of quantum optics from the point of view of phase space. Modern in style and didactically skillful, Quantum Optics in Phase Space prepares students for their own research by presenting detailed derivations, many illustrations and a large set of workable problems at the end of each chapter. Often, the theoretical treatments are accompanied by the corresponding experiments. An exhaustive list of references provides a guide to the literature. Quantum Optics in Phase Space also serves advanced researchers as a comprehensive reference book. Starting with an extensive review of the experiments that define quantum optics and a brief summary of the foundations of quantum mechanics the author Wolfgang P. Schleich illustrates the properties of quantum states with the help of the Wigner phase space distribution function. His description of waves ala WKB connects semi-classical phase space with the Berry phase. These semi-classical techniques provide deeper insight into the timely topics of wave packet dynamics, fractional revivals and the Talbot effect. Whereas the first half of the book deals with mechanical oscillators such as ions in a trap or atoms in a standing wave the second half addresses problems where the quantization of the radiation field is of importance. Such topics extensively discussed include optical interferometry, the atom-field interaction, quantum state preparation and measurement, entanglement, decoherence, the one-atom maser and atom optics in quantized light fields. Quantum Optics in Phase Space presents the subject of quantum optics as transparently as possible. Giving wide-ranging references, it enables students to study and solve problems with modern scientific literature. The result is a remarkably concise yet comprehensive and accessible text- and reference book - an inspiring source of information and insight for students, teachers and researchers alike.


Quantum Mechanics in Phase Space

Quantum Mechanics in Phase Space

Author: Cosmas Zachos

Publisher: World Scientific

Published: 2005

Total Pages: 560

ISBN-13: 9812383840

DOWNLOAD EBOOK

Wigner's quasi-probability distribution function in phase space is a special (Weyl) representation of the density matrix. It has been useful in describing quantum transport in quantum optics; nuclear physics; decoherence, quantum computing, and quantum chaos. It is also important in signal processing and the mathematics of algebraic deformation. A remarkable aspect of its internal logic, pioneered by Groenewold and Moyal, has only emerged in the last quarter-century: it furnishes a third, alternative, formulation of quantum mechanics, independent of the conventional Hilbert space, or path integral formulations.In this logically complete and self-standing formulation, one need not choose sides ? coordinate or momentum space. It works in full phase space, accommodating the uncertainty principle, and it offers unique insights into the classical limit of quantum theory. This invaluable book is a collection of the seminal papers on the formulation, with an introductory overview which provides a trail map for those papers; an extensive bibliography; and simple illustrations, suitable for applications to a broad range of physics problems. It can provide supplementary material for a beginning graduate course in quantum mechanics.


Phase Space Picture Of Quantum Mechanics: Group Theoretical Approach

Phase Space Picture Of Quantum Mechanics: Group Theoretical Approach

Author: Young Suh Kim

Publisher: World Scientific

Published: 1991-03-06

Total Pages: 352

ISBN-13: 9814506672

DOWNLOAD EBOOK

This book covers the theory and applications of the Wigner phase space distribution function and its symmetry properties. The book explains why the phase space picture of quantum mechanics is needed, in addition to the conventional Schrödinger or Heisenberg picture. It is shown that the uncertainty relation can be represented more accurately in this picture. In addition, the phase space picture is shown to be the natural representation of quantum mechanics for modern optics and relativistic quantum mechanics of extended objects.


A Concise Treatise On Quantum Mechanics In Phase Space

A Concise Treatise On Quantum Mechanics In Phase Space

Author: Thomas L Curtright

Publisher: World Scientific Publishing Company

Published: 2013-11-11

Total Pages: 170

ISBN-13: 9814520462

DOWNLOAD EBOOK

This is a text on quantum mechanics formulated simultaneously in terms of position and momentum, i.e. in phase space. It is written at an introductory level, drawing on the remarkable history of the subject for inspiration and motivation. Wigner functions — density matrices in a special Weyl representation — and star products are the cornerstones of the formalism.The resulting framework is a rich source of physical intuition. It has been used to describe transport in quantum optics, structure and dynamics in nuclear physics, chaos, and decoherence in quantum computing. It is also of importance in signal processing and the mathematics of algebraic deformation. A remarkable aspect of its internal logic, pioneered by Groenewold and Moyal, has only emerged in the last quarter-century: it furnishes a third, alternative way to formulate and understand quantum mechanics, independent of the conventional Hilbert space or path integral approaches to the subject.In this logically complete and self-standing formulation, one need not choose sides between coordinate or momentum space variables. It works in full phase space, accommodating the uncertainty principle; and it offers unique insights into the classical limit of quantum theory. The observables in this formulation are c-number functions in phase space instead of operators, with the same interpretation as their classical counterparts, only composed together in novel algebraic ways using star products.This treatise provides an introductory overview and supplementary material suitable for an advanced undergraduate or a beginning graduate course in quantum mechanics.


Geometric Optics on Phase Space

Geometric Optics on Phase Space

Author: Kurt Bernardo Wolf

Publisher: Springer Science & Business Media

Published: 2004-07-21

Total Pages: 400

ISBN-13: 9783540220398

DOWNLOAD EBOOK

Symplectic geometry, well known as the basic structure of Hamiltonian mechanics, is also the foundation of optics. In fact, optical systems (geometric or wave) have an even richer symmetry structure than mechanical ones (classical or quantum). The symmetries underlying the geometric model of light are based on the symplectic group. Geometric Optics on Phase Space develops both geometric optics and group theory from first principles in their Hamiltonian formulation on phase space. This treatise provides the mathematical background and also collects a host of useful methods of practical importance, particularly the fractional Fourier transform currently used for image processing. The reader will appreciate the beautiful similarities between Hamilton's mechanics and this approach to optics. The appendices link the geometry thus introduced to wave optics through Lie methods. The book addresses researchers and graduate students.


Quantum Interferometry in Phase Space

Quantum Interferometry in Phase Space

Author: Martin Suda

Publisher: Springer Science & Business Media

Published: 2006

Total Pages: 204

ISBN-13: 9783540260707

DOWNLOAD EBOOK

"Quantum Interferometry in Phase Space" is primarily concerned with quantum-mechanical distribution functions and their applications in quantum optics and neutron interferometry. In the first part of the book, the author describes the phase-space representation of quantum optical phenomena such as coherent and squeezed states. Applications to interferometry, e.g. in beam splitters and fiber networks, are also presented. In the second part of the book, the theoretical formalism is applied to neutron interferometry, including the dynamical theory of diffraction, coherence properties of superposed beams, and dephasing effects.


A Concise Treatise on Quantum Mechanics in Phase Space

A Concise Treatise on Quantum Mechanics in Phase Space

Author: Thomas Curtright

Publisher: World Scientific Publishing Company Incorporated

Published: 2014

Total Pages: 159

ISBN-13: 9789814520430

DOWNLOAD EBOOK

This is a text on quantum mechanics formulated simultaneously in terms of position and momentum, i.e. in phase space. It is written at an introductory level, drawing on the remarkable history of the subject for inspiration and motivation. Wigner functions density matrices in a special Weyl representation and star products are the cornerstones of the formalism. The resulting framework is a rich source of physical intuition. It has been used to describe transport in quantum optics, structure and dynamics in nuclear physics, chaos, and decoherence in quantum computing. It is also of importance in signal processing and the mathematics of algebraic deformation. A remarkable aspect of its internal logic, pioneered by Groenewold and Moyal, has only emerged in the last quarter-century: it furnishes a third, alternative way to formulate and understand quantum mechanics, independent of the conventional Hilbert space or path integral approaches to the subject. In this logically complete and self-standing formulation, one need not choose sides between coordinate or momentum space variables. It works in full phase-space, accommodating the uncertainty principle; and it offers unique insights into the classical limit of quantum theory. The observables in this formulation are c-number functions in phase space instead of operators, with the same interpretation as their classical counterparts, only composed together in novel algebraic ways using star products. This treatise provides an introductory overview and supplementary material suitable for an advanced undergraduate or a beginning graduate course in quantum mechanics.