For upper-level undergraduates and graduate students: an introduction to the fundamentals of quantum mechanics, emphasizing aspects essential to an understanding of solid-state theory. Numerous problems (and selected answers), projects, exercises.
If you need a book that relates the core principles of quantum mechanics to modern applications in engineering, physics, and nanotechnology, this is it. Students will appreciate the book's applied emphasis, which illustrates theoretical concepts with examples of nanostructured materials, optics, and semiconductor devices. The many worked examples and more than 160 homework problems help students to problem solve and to practise applications of theory. Without assuming a prior knowledge of high-level physics or classical mechanics, the text introduces Schrödinger's equation, operators, and approximation methods. Systems, including the hydrogen atom and crystalline materials, are analyzed in detail. More advanced subjects, such as density matrices, quantum optics, and quantum information, are also covered. Practical applications and algorithms for the computational analysis of simple structures make this an ideal introduction to quantum mechanics for students of engineering, physics, nanotechnology, and other disciplines. Additional resources available from www.cambridge.org/9780521897839.
Quantum mechanics is widely recognized as the basic law which governs all of nature, including all materials and devices. It has always been essential to the understanding of material properties, and as devices become smaller it is also essential for studying their behavior. Nevertheless, only a small fraction of graduate engineers and materials scientists take a course giving a systematic presentation of the subject. The courses for physics students tend to focus on the fundamentals and formal background, rather than on application, and do not fill the need. This invaluable text has been designed to fill the very apparent gap.The book covers those parts of quantum theory which may be necessary for a modern engineer. It focuses on the approximations and concepts which allow estimates of the entire range of properties of nuclei, atoms, molecules, and solids, as well as the behavior of lasers and other quantum-optic devices. It may well prove useful also to graduate students in physics, whose courses on quantum theory tend not to include any of these applications. The material has been the basis of a course taught to graduate engineering students for the past four years at Stanford University.Topics Discussed: Foundations; Simple Systems; Hamiltonian Mechanics; Atoms and Nuclei; Molecules; Crystals; Transitions; Tunneling; Transition Rates; Statistical Mechanics; Transport; Noise; Energy Bands; Electron Dynamics in Solids; Vibrations in Solids; Creation and Annihilation Operators; Phonons; Photons and Lasers; Coherent States; Coulomb Effects; Cooperative Phenomena; Magnetism; Shake-off Excitations; Exercise Problems.
Quantum Mechanics for Applied Physics and Engineering is devoted to the use of quantum mechanics in applied physics and engineering. Topics covered include elementary quantum theory, quantum statistics and many-particle systems, and energy bands in crystals. Approximation techniques for the Schrödinger equation are also described. Comprised of seven chapters, this book opens with an overview of basic quantum mechanics and includes a discussion on wave-particle duality, probability current density, and periodic boundary conditions. Quantum statistics is then considered as a prelude to the free-electron theory of metals, along with the use of perturbation theory to evaluate modifications in free-electron theory. The following chapters explore the use of WKB approximation to deduce the transmission coefficient for electron tunneling in solids; the theory of electronic energy bands; and the application of the Schrödinger equation to the problem of the periodic potential of a crystalline solid. Examples from solid-state physics are employed to illustrate specific applications and to demonstrate the principal results that can be deduced by means of quantum theory. This monograph is written primarily for engineers and applied physicists.
* An applied focus for electrical engineers and materials scientists. * Theoretical results supported with real-world systems and applications. * Includes worked examples and self-study questions. * Solutions manual available.
This book covers the entire span of quantum mechanics whose developments have taken place during the early part of the twentieth century up till the present day. We start with the Rutherford-Bohr model of the atom followed by Schrodinger's wave mechanics with its application to the solution of calculating the energy spectrum of a particle in a box, the harmonic oscillator and finally the hydrogen atom. Heisenberg's matrix mechanics and its duality with Schrodinger's wave mechanics, quantum mechanics in the interaction picture. Dirac's relativistic theory of the electron exhibiting the spin of the electron as a relativistic effect when it interacts with an external electromagnetic field. Feynman's path integral approach to non-relativistic quantum mechanics with is a marvellous intuitive interpretation as a sum over paths and how classical mechanics is obtained from its limit as Planck' constant tends to zero, methods for computing the spectra of the Dirac Hamiltonian in a radial potential, quantum field theory as developed by Feynman, Schwinger, Tomonaga and Dyson for describing the interaction between electrons, positrons, and photons via propagators using both the operator theoretic expansions and Feynman's path integral. We also introduce time independent and time dependent perturbation theory in quantum mechanics with applications to quantum gate design for quantum computers forming a major part of the research conducted by the author's research group, Quantum noise introduced into the Schrodinger and Dirac's equation based on the Hudson-Parthasarathy quantum stochastic calculus in Boson Fock space, scattering theory and wave operators with applications to quantum gate design, some aspects of second quantization like the interpretation of Boson Fock space in terms of harmonic oscillator algebras and the BCS theory of superconductivity, Wigner-Mackey-Frobenius theory of induced representations of a group with applications to Wigner's theory of particle classification, Dirac's equation in a gravitational field and Yang-Mills non-Abelian gauge theories with application to the construction of unified quantum field theories and finally, the more recent theory of super-symmetry which is a Boson-Fermion unification theory. We have discussed the statistics of Boson's, Fermions and Maxwell-Boltzmann based on entropy maximization. The book is written in problem-solution format and it would be of use to physicists and engineers interested respectively in developing unified field theories and in the design of quantum gates. Note: T&F does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.
The book is designed for a one-semester graduate course in quantum mechanics for electrical engineers. It can also be used for teaching quantum mechanics to graduate students in materials science and engineering departments as well as to applied physicists. The selection of topics in the book is based on their relevance to engineering applications. The book provides the theoretical foundation for graduate courses in quantum optics and lasers, semiconductor electronics, applied superconductivity and quantum computing. It covers (along with traditional subjects) the following topics: resonant and Josephson tunneling; Landau levels and their relation to the integer quantum Hall effect; effective mass Schrodinger equation and semi-classical transport; quantum transitions in two-level systems; Berry phase and Berry curvature; density matrix and optical Bloch equation for two-level systems; Wigner function and quantum transport; exchange interaction and spintronic.
Explore the relationship between quantum mechanics and information-age applications This volume takes an altogether unique approach to quantum mechanics. Providing an in-depth exposition of quantum mechanics fundamentals, it shows how these concepts are applied to most of today's information technologies, whether they are electronic devices or materials. No other text makes this critical, essential leap from theory to real-world applications. The book's lively discussion of the mathematics involved fits right in with contemporary multidisciplinary trends in education: Once the basic formulation has been derived in a given chapter, the connection to important technological problems is summarily described. A book for the information age, Quantum Mechanics: Fundamentals and Applications to Technology promises to become a standard in departments of electrical engineering, applied physics, and materials science, as well as physics. It is an excellent text for senior undergraduate and graduate students, and a helpful reference for practicing scientists, engineers, and chemists in the semiconductor and electronic industries.
There has been growing interest in the model of semiconductor lasers with non-Markovian relaxation. Introducing senior and graduate students and research scientists to quantum mechanics concepts, which are becoming an essential tool in modern engineering, Engineering Quantum Mechanics develops a non-Markovian model for the optical gain of semiconductor, taking into account the rigorous electronic band-structure and the non-Markovian relaxation using the quantum statistical reduced-density operator formalism. Example programs based on Fortran 77 are provided for band-structures of zinc-blende and wurtzite quantum wells.