Quantum Hybrid Electronics and Materials

Quantum Hybrid Electronics and Materials

Author: Yoshiro Hirayama

Publisher: Springer Nature

Published: 2022-05-03

Total Pages: 347

ISBN-13: 9811912017

DOWNLOAD EBOOK

This book highlights recent advances in quantum control technologies with regard to hybrid quantum systems. It addresses the following topics: phonon engineering based on phononic crystals, carbon-based nano materials like graphene and nanotubes, Terahertz light technology for single-molecule and quantum dots, nuclear-spin-based metrology for semiconductor quantum systems, quantum anomalous Hall effect in magnetic topological insulators, chiral three-dimensional photonic crystals, and bio-inspired magnonic systems. Each topic, as a component in the framework of hybrid quantum systems, is concisely presented by experts at the forefront of the field. Accordingly, the book offers a valuable asset, and will help readers find advanced technologies and materials suitable for their purposes.


Hybrid Nanomaterials

Hybrid Nanomaterials

Author: Rafael Vargas-Bernal

Publisher: BoD – Books on Demand

Published: 2020-06-10

Total Pages: 150

ISBN-13: 1838803378

DOWNLOAD EBOOK

Two of the hottest research topics today are hybrid nanomaterials and flexible electronics. As such, this book covers both topics with chapters written by experts from across the globe. Chapters address hybrid nanomaterials, electronic transport in black phosphorus, three-dimensional nanocarbon hybrids, hybrid ion exchangers, pressure-sensitive adhesives for flexible electronics, simulation and modeling of transistors, smart manufacturing technologies, and inorganic semiconductors.


Hybrid Nanocomposites for Nanotechnology

Hybrid Nanocomposites for Nanotechnology

Author: Lhadi Merhari

Publisher: Springer Science & Business Media

Published: 2009-03-03

Total Pages: 840

ISBN-13: 0387304282

DOWNLOAD EBOOK

This book covers the latest advances in polymer-inorganic nanocomposites, with particular focus on high-added-value applications in fields including electronics, optics, magnetism and biotechnology. The unique focus of this book is on electronic, optical, magnetic and biomedical applications of hybrid nanocomposites. Coverage includes: Synthesis methods and issues and production scale-up; Characterization methods; Electronic applications; Optical applications and Photonics; Magnetic applications; and Biomedical applications. The book offers readers a solid grasp of the state of the art, and of current challenges in non-traditional applications of hybrid nanocomposites.


Nanoscale Photonics and Optoelectronics

Nanoscale Photonics and Optoelectronics

Author: Zhiming M Wang

Publisher: Springer Science & Business Media

Published: 2010-11-16

Total Pages: 240

ISBN-13: 144197587X

DOWNLOAD EBOOK

The intersection of nanostructured materials with photonics and electronics shows great potential for clinical diagnostics, sensors, ultrafast telecommunication devices, and a new generation of compact and fast computers. Nanophotonics draws upon cross-disciplinary expertise from physics, materials science, chemistry, electrical engineering, biology, and medicine to create novel technologies to meet a variety of challenges. This is the first book to focus on novel materials and techniques relevant to the burgeoning area of nanoscale photonics and optoelectronics, including novel-hybrid materials with multifunctional capabilities and recent advancements in the understanding of optical interactions in nanoscale materials and quantum-confined objects. Leading experts provide a fundamental understanding of photonics and the related science and technology of plasmonics, polaritons, quantum dots for nanophotonics, nanoscale field emitters, near-field optics, nanophotonic architecture, and nanobiophotonic materials.


Innovations and Applications of Hybrid Nanomaterials

Innovations and Applications of Hybrid Nanomaterials

Author: Khanna, Virat

Publisher: IGI Global

Published: 2024-02-27

Total Pages: 352

ISBN-13:

DOWNLOAD EBOOK

In the field of materials science, traditional materials often fall short in meeting the demands of contemporary industries, where multifunctionality, enhanced performance, and adaptability are pivotal. This unmet need highlights a compelling problem—a gap in materials that can truly revolutionize various sectors. As industries strive for advancements, a new challenge emerges: the scarcity of materials capable of performing multiple functions efficiently across domains. This predicament forms the backdrop against which Innovations and Applications of Hybrid Nanomaterials offers a comprehensive exploration of hybrid nanomaterials poised to bridge this critical gap. Innovations and Applications of Hybrid Nanomaterials addresses the urgent need for materials that transcend conventional boundaries, providing heightened performance, efficiency, and adaptability across diverse industries. The book dissects the design and development principles behind hybrid nanocomposites, unraveling the latest fabrication techniques and advanced characterization methods. Each chapter explores the profound impact of these materials in specific technological applications, ranging from electronics and energy to aerospace, biomedical engineering, and environmental sensing. Delve into a compendium of state-of-the-art methodologies enabling researchers to engineer materials with unparalleled precision, recognizing the transformative potential of multifunctional materials and unveiling their advantages, challenges, and future trajectories.


Advanced Epitaxy for Future Electronics, Optics, and Quantum Physics

Advanced Epitaxy for Future Electronics, Optics, and Quantum Physics

Author: Arthur C. Gossard

Publisher: National Academies Press

Published: 2000-11-28

Total Pages: 19

ISBN-13: 0309183960

DOWNLOAD EBOOK

The future development of electronics, optics, and, quite probably, quantum physics is being driven by advances in epitaxial materials. Band gap engineering, wafer bonding techniques, and epitaxial regrowth technology will push transistors far beyond the present speed barriers. Oxide growth within epitaxial layer structures and new advances in tunnel structures will push the development of the next generation of high-performance laser arrays and of efficient cascade laser designs. Perfection of the growth of semiconductor nitrides will move future electronics to higher powers and to suitability for extreme environments while revolutionizing lighting and display. Growth technologies to incorporate metallic particles and magnetic elements within high-quality semiconductors promise ultrafast electro-optical components for chemical and biological applications as well as electronically controlled magnetism for future memories and electrical/magnetic hybrid devices. Quantum dot materials will lead the field of signal electronics while hopefully providing a new proving and discovery ground for quantum physics. This paper dicusses the current progress in these areas.


Fundamentals Of Electronic Materials And Devices: A Gentle Introduction To The Quantum-classical World

Fundamentals Of Electronic Materials And Devices: A Gentle Introduction To The Quantum-classical World

Author: Avik Ghosh

Publisher: World Scientific

Published: 2023-02-02

Total Pages: 349

ISBN-13: 9811265976

DOWNLOAD EBOOK

The Romans built enduring bridges well before Newton came along, armed simply with a working knowledge of mechanics and materials. In contrast, today's bridge building is an elaborate enterprise involving CAD tools, composite materials and acoustic imaging. When technology is pushed to its limits, a working knowledge proves inadequate, and an in-depth understanding of core physical principles, both macroscopic and microscopic, top-down vs bottom-up, becomes essential.We find ourselves today at a similar crossroad in semiconductor device technology, where a working knowledge of solid state electronics is no longer enough. Faced with the prohibitive cost of computing and the slowdown of chip manufacturing, device scaling and the global supply chain, the semiconductor industry is forced to explore alternate platforms such as 2-D materials, spintronics, analog processing and quantum engineering.This book combines top-down classical device physics with bottom-up quantum transport in a single venue to provide the basis for such a scientific exploration. It is essential, easy reading for beginning undergraduate and practicing graduate students, physicists unfamiliar with device engineering and engineers untrained in quantum physics. With just a modest pre-requisite of freshman maths, the book works quickly through key concepts in quantum physics, Matlab exercises and original homeworks, to cover a wide range of topics from chemical bonding to Hofstader butterflies, domain walls to Chern insulators, solar cells to photodiodes, FinFETs to Majorana fermions. For the practicing device engineer, it provides new concepts such as the quantum of resistance, while for the practicing quantum physicist, it provides new contexts such as the tunnel transistor.


Nanoelectronics and Materials Development

Nanoelectronics and Materials Development

Author: Abhijit Kar

Publisher: BoD – Books on Demand

Published: 2016-07-27

Total Pages: 152

ISBN-13: 9535125257

DOWNLOAD EBOOK

The current edited book presents some of the most advanced research findings in the field of nanotechnology and its application in materials development in a very concise form. The main focus of the book is dragged toward those materials where electronic properties are manipulated for development of advanced materials. We have discussed about the extensive usage of nanotechnology and its impact on various facets of the chip-making practice from materials to devices such as basic memory, quantum dots, nanotubes, nanowires, graphene-like 2D materials, and CIGS thin-film solar cells as energy-harvesting devices. Researchers as well as students can gain valuable insights into the different processing of nanomaterials, characterization procedures of the materials in nanoscale, and their different functional properties and applications.


Introduction to Quantum Electronics

Introduction to Quantum Electronics

Author: H. G. Unger

Publisher: Elsevier

Published: 2017-05-04

Total Pages: 197

ISBN-13: 1483156710

DOWNLOAD EBOOK

Introduction to Quantum Electronics is based on a one-semester lecture of electrical engineering for German students. The book is an introduction to the fundamentals of lasers and masers and a presentation of the principles of physics, their theory, and methods of analysis that seek to analyze, explain, and quantify related important phenomena. The properties of a laser is then discussed, the author comparing it to the properties of the maser. Although masers are based on the same physical properties as that of the lasers, masers amplify microwaves by induced emission. How the laser is amplified, its power and frequency of oscillation, and which media are suitable for lasers are analyzed. Descriptions of the laser take more emphasis as it is considered to have more technical applications than the maser. An example given is the operation of the gas laser, because it exhibits coherence in time and space, considered as the most important quality of laser beams. Physicists, students, and academicians in the field of electrical engineering and quantum electronics will find that this book addresses many of their interests.


Computational Science – ICCS 2023

Computational Science – ICCS 2023

Author: Jiří Mikyška

Publisher: Springer Nature

Published: 2023-06-28

Total Pages: 809

ISBN-13: 3031360303

DOWNLOAD EBOOK

The five-volume set LNCS 14073-14077 constitutes the proceedings of the 23rd International Conference on Computational Science, ICCS 2023, held in Prague, Czech Republic, during July 3-5, 2023. The total of 188 full papers and 94 short papers presented in this book set were carefully reviewed and selected from 530 submissions. 54 full and 37 short papers were accepted to the main track; 134 full and 57 short papers were accepted to the workshops/thematic tracks. The theme for 2023, "Computation at the Cutting Edge of Science", highlights the role of Computational Science in assisting multidisciplinary research. This conference was a unique event focusing on recent developments in scalable scientific algorithms, advanced software tools; computational grids; advanced numerical methods; and novel application areas. These innovative novel models, algorithms, and tools drive new science through efficient application in physical systems, computational and systems biology, environmental systems, finance, and others.