This book discusses the physical phases of quantum chromodynamics (QCD) in ordinary environments and also in extreme environments of high temperatures and high baryon number. It introduces lattice gauge theory, covering fundamentals and important developments, and emphasises the application of QCD to the study of matter in extreme environments.
Filling a gap in the current literature, this book is the first entirely dedicated to high energy quantum chromodynamics (QCD) including parton saturation and the color glass condensate (CGC). It presents groundbreaking progress on the subject and describes many problems at the forefront of research, bringing postgraduate students, theorists and interested experimentalists up to date with the current state of research in this field. The material is presented in a pedagogical way, with numerous examples and exercises. Discussion ranges from the quasi-classical McLerran–Venugopalan model to the linear BFKL and nonlinear BK/JIMWLK small-x evolution equations. The authors adopt both a theoretical and an experimental outlook, and present the physics of strong interactions in a universal way, making it useful for physicists from various subcommunities of high energy and nuclear physics, and applicable to processes studied at all high energy accelerators around the world. A selection of color figures is available online at www.cambridge.org/9780521112574.
This book originated in the Workshop on "Hadronic Matter at Extreme Energy Density," held at the Ettore Majorana Center in Erice, October 13-21, 1978. The lectures have been expanded to their present size, and the contributions of seven seminars have been represented by abstracts which should stimulate the reader's interest and guide him to the original literature. The title of the book perhaps does not fully represent its content but still is a good indication of the conceptual motiva tion of our Workshop. The development of physics in recent years has filled in the first details of the grand design which was initiated with the theory of general relativity and aspires to a synthesis of all the different interactions. However, this development has not been a linear one but .has followed a divided pattern: general relativity had its phenomenological domain in cosmology and had little to do with high-energy elementary particle physics. It was progress in the knowledge of symmetries in particle physics that fueled the advance toward the present formulation of supergravity, thus help ing to heal this historical separation. The great program would not have advanced so far if our attention had all the time stayed focused at infinity, where the great issues are.
Recent scientific and technical advances have made it possible to create matter in the laboratory under conditions relevant to astrophysical systems such as supernovae and black holes. These advances will also benefit inertial confinement fusion research and the nation's nuclear weapon's program. The report describes the major research facilities on which such high energy density conditions can be achieved and lists a number of key scientific questions about high energy density physics that can be addressed by this research. Several recommendations are presented that would facilitate the development of a comprehensive strategy for realizing these research opportunities.
The thermodynamics of strongly interacting matter has become a profound and challenging area of modern physics, both in theory and in experiment. Statistical quantum chromodynamics, through analytical as well as numerical studies, provides the main theoretical tool, while in experiment, high-energy nuclear collisions are the key for extensive laboratory investigations. The field therefore straddles statistical, particle and nuclear physics, both conceptually and in the methods of investigation used. This course-tested primer addresses above all the many young scientists starting their scientific research in this field, providing them with a general, self-contained introduction that emphasizes in particular the basic concepts and ideas, with the aim of explaining why we do what we do. To achieve this goal, the present text concentrates mainly on equilibrium thermodynamics: first, the fundamental ideas of strong interaction thermodynamics are introduced and then the main concepts and methods used in the study of the physics of complex systems are summarized. Subsequently, simplified phenomenological pictures, leading to critical behavior in hadronic matter and to hadron-quark phase transitions are introduced, followed by elements of finite-temperature lattice QCD leading to the important results obtained in computer simulation studies of the lattice approach. Next, the relation of the resulting critical behavior to symmetry breaking/restoration in QCD is clarified before the text turns to the study of the QCD phase diagram. The presentation of bulk equilibrium thermodynamics is completed by studying the properties of the quark-gluon plasma as new state of strongly interacting matter. The final chapters of the book are devoted to more specific topics which arise when nuclear collisions are considered as a tool for the experimental study of QCD thermodynamics.
Recent results from all types of high energy colliders (e⁺e⁻, pp, ep) are presented from the view point of electroweak interaction and QCD/Jet physics together with related phenomenological reviews. Expected physics at future colliders, both being built or planned, are also discussed including e+e- linear collider, pp collider and heavy ion collider.