Quantification of Uncertainty: Improving Efficiency and Technology

Quantification of Uncertainty: Improving Efficiency and Technology

Author: Marta D'Elia

Publisher: Springer Nature

Published: 2020-07-30

Total Pages: 290

ISBN-13: 3030487210

DOWNLOAD EBOOK

This book explores four guiding themes – reduced order modelling, high dimensional problems, efficient algorithms, and applications – by reviewing recent algorithmic and mathematical advances and the development of new research directions for uncertainty quantification in the context of partial differential equations with random inputs. Highlighting the most promising approaches for (near-) future improvements in the way uncertainty quantification problems in the partial differential equation setting are solved, and gathering contributions by leading international experts, the book’s content will impact the scientific, engineering, financial, economic, environmental, social, and commercial sectors.


Handbook of Uncertainty Quantification

Handbook of Uncertainty Quantification

Author: Roger Ghanem

Publisher: Springer

Published: 2016-05-08

Total Pages: 0

ISBN-13: 9783319123844

DOWNLOAD EBOOK

The topic of Uncertainty Quantification (UQ) has witnessed massive developments in response to the promise of achieving risk mitigation through scientific prediction. It has led to the integration of ideas from mathematics, statistics and engineering being used to lend credence to predictive assessments of risk but also to design actions (by engineers, scientists and investors) that are consistent with risk aversion. The objective of this Handbook is to facilitate the dissemination of the forefront of UQ ideas to their audiences. We recognize that these audiences are varied, with interests ranging from theory to application, and from research to development and even execution.


Uncertainty Quantification in Multiscale Materials Modeling

Uncertainty Quantification in Multiscale Materials Modeling

Author: Yan Wang

Publisher: Woodhead Publishing

Published: 2020-03-12

Total Pages: 604

ISBN-13: 0081029411

DOWNLOAD EBOOK

Uncertainty Quantification in Multiscale Materials Modeling provides a complete overview of uncertainty quantification (UQ) in computational materials science. It provides practical tools and methods along with examples of their application to problems in materials modeling. UQ methods are applied to various multiscale models ranging from the nanoscale to macroscale. This book presents a thorough synthesis of the state-of-the-art in UQ methods for materials modeling, including Bayesian inference, surrogate modeling, random fields, interval analysis, and sensitivity analysis, providing insight into the unique characteristics of models framed at each scale, as well as common issues in modeling across scales.


Mastering Uncertainty in Mechanical Engineering

Mastering Uncertainty in Mechanical Engineering

Author: Peter F. Pelz

Publisher: Springer Nature

Published: 2021-10-11

Total Pages: 483

ISBN-13: 3030783545

DOWNLOAD EBOOK

This open access book reports on innovative methods, technologies and strategies for mastering uncertainty in technical systems. Despite the fact that current research on uncertainty is mainly focusing on uncertainty quantification and analysis, this book gives emphasis to innovative ways to master uncertainty in engineering design, production and product usage alike. It gathers authoritative contributions by more than 30 scientists reporting on years of research in the areas of engineering, applied mathematics and law, thus offering a timely, comprehensive and multidisciplinary account of theories and methods for quantifying data, model and structural uncertainty, and of fundamental strategies for mastering uncertainty. It covers key concepts such as robustness, flexibility and resilience in detail. All the described methods, technologies and strategies have been validated with the help of three technical systems, i.e. the Modular Active Spring-Damper System, the Active Air Spring and the 3D Servo Press, which have been in turn developed and tested during more than ten years of cooperative research. Overall, this book offers a timely, practice-oriented reference guide to graduate students, researchers and professionals dealing with uncertainty in the broad field of mechanical engineering.


Uncertainty Quantification in Laminated Composites

Uncertainty Quantification in Laminated Composites

Author: Sudip Dey

Publisher: CRC Press

Published: 2018-09-19

Total Pages: 375

ISBN-13: 1498784461

DOWNLOAD EBOOK

Over the last few decades, uncertainty quantification in composite materials and structures has gained a lot of attention from the research community as a result of industrial requirements. This book presents computationally efficient uncertainty quantification schemes following meta-model-based approaches for stochasticity in material and geometric parameters of laminated composite structures. Several metamodels have been studied and comparative results have been presented for different static and dynamic responses. Results for sensitivity analyses are provided for a comprehensive coverage of the relative importance of different material and geometric parameters in the global structural responses.


Active Subspaces

Active Subspaces

Author: Paul G. Constantine

Publisher: SIAM

Published: 2015-03-17

Total Pages: 105

ISBN-13: 1611973864

DOWNLOAD EBOOK

Scientists and engineers use computer simulations to study relationships between a model's input parameters and its outputs. However, thorough parameter studies are challenging, if not impossible, when the simulation is expensive and the model has several inputs. To enable studies in these instances, the engineer may attempt to reduce the dimension of the model's input parameter space. Active subspaces are an emerging set of dimension reduction tools that identify important directions in the parameter space. This book describes techniques for discovering a model's active subspace and proposes methods for exploiting the reduced dimension to enable otherwise infeasible parameter studies. Readers will find new ideas for dimension reduction, easy-to-implement algorithms, and several examples of active subspaces in action.


Understanding Risks and Uncertainties in Energy and Climate Policy

Understanding Risks and Uncertainties in Energy and Climate Policy

Author: Haris Doukas

Publisher: Springer

Published: 2018-12-10

Total Pages: 271

ISBN-13: 3030031527

DOWNLOAD EBOOK

This open access book analyzes and seeks to consolidate the use of robust quantitative tools and qualitative methods for the design and assessment of energy and climate policies. In particular, it examines energy and climate policy performance and associated risks, as well as public acceptance and portfolio analysis in climate policy, and presents methods for evaluating the costs and benefits of flexible policy implementation as well as new framings for business and market actors. In turn, it discusses the development of alternative policy pathways and the identification of optimal switching points, drawing on concrete examples to do so. Lastly, it discusses climate change mitigation policies’ implications for the agricultural, food, building, transportation, service and manufacturing sectors.


Numerical Geometry, Grid Generation and Scientific Computing

Numerical Geometry, Grid Generation and Scientific Computing

Author: Vladimir A. Garanzha

Publisher: Springer Nature

Published: 2021-09-25

Total Pages: 419

ISBN-13: 3030767981

DOWNLOAD EBOOK

The focus of these conference proceedings is on research, development, and applications in the fields of numerical geometry, scientific computing and numerical simulation, particularly in mesh generation and related problems. In addition, this year’s special focus is on Delaunay triangulations and their applications, celebrating the 130th birthday of Boris Delaunay. In terms of content, the book strikes a balance between engineering algorithms and mathematical foundations. It presents an overview of recent advances in numerical geometry, grid generation and adaptation in terms of mathematical foundations, algorithm and software development and applications. The specific topics covered include: quasi-conformal and quasi-isometric mappings, hyperelastic deformations, multidimensional generalisations of the equidistribution principle, discrete differential geometry, spatial and metric encodings, Voronoi-Delaunay theory for tilings and partitions, duality in mathematical programming and numerical geometry, mesh-based optimisation and optimal control methods. Further aspects examined include iterative solvers for variational problems and algorithm and software development. The applications of the methods discussed are multidisciplinary and include problems from mathematics, physics, biology, chemistry, material science, and engineering.


Stochastic Methods for Flow in Porous Media

Stochastic Methods for Flow in Porous Media

Author: Dongxiao Zhang

Publisher: Elsevier

Published: 2001-10-11

Total Pages: 371

ISBN-13: 0080517773

DOWNLOAD EBOOK

Stochastic Methods for Flow in Porous Media: Coping with Uncertainties explores fluid flow in complex geologic environments. The parameterization of uncertainty into flow models is important for managing water resources, preserving subsurface water quality, storing energy and wastes, and improving the safety and economics of extracting subsurface mineral and energy resources. This volume systematically introduces a number of stochastic methods used by researchers in the community in a tutorial way and presents methodologies for spatially and temporally stationary as well as nonstationary flows. The author compiles a number of well-known results and useful formulae and includes exercises at the end of each chapter. - Balanced viewpoint of several stochastic methods, including Greens' function, perturbative expansion, spectral, Feynman diagram, adjoint state, Monte Carlo simulation, and renormalization group methods - Tutorial style of presentation will facilitate use by readers without a prior in-depth knowledge of Stochastic processes - Practical examples throughout the text - Exercises at the end of each chapter reinforce specific concepts and techniques - For the reader who is interested in hands-on experience, a number of computer codes are included and discussed


Risk, Uncertainty and Profit

Risk, Uncertainty and Profit

Author: Frank H. Knight

Publisher: Cosimo, Inc.

Published: 2006-11-01

Total Pages: 401

ISBN-13: 1602060053

DOWNLOAD EBOOK

A timeless classic of economic theory that remains fascinating and pertinent today, this is Frank Knight's famous explanation of why perfect competition cannot eliminate profits, the important differences between "risk" and "uncertainty," and the vital role of the entrepreneur in profitmaking. Based on Knight's PhD dissertation, this 1921 work, balancing theory with fact to come to stunning insights, is a distinct pleasure to read. FRANK H. KNIGHT (1885-1972) is considered by some the greatest American scholar of economics of the 20th century. An economics professor at the University of Chicago from 1927 until 1955, he was one of the founders of the Chicago school of economics, which influenced Milton Friedman and George Stigler.