The two-volume set LNCS 1842/1843 constitutes the refereed proceedings of the 6th European Conference on Computer Vision, ECCV 2000, held in Dublin, Ireland in June/July 2000. The 116 revised full papers presented were carefully selected from a total of 266 submissions. The two volumes offer topical sections on recognitions and modelling; stereoscopic vision; texture and shading; shape; structure from motion; image features; active, real-time, and robot vision; segmentation and grouping; vision systems engineering and evaluation; calibration; medical image understanding; and visual motion.
The book is a collection of high-quality peer-reviewed research papers presented at International Conference on Frontiers of Intelligent Computing: Theory and applications (FICTA 2016) held at School of Computer Engineering, KIIT University, Bhubaneswar, India during 16 - 17 September 2016. The book aims to present theories, methodologies, new ideas, experiences, applications in all areas of intelligent computing and its applications to various engineering disciplines like computer science, electronics, electrical, mechanical engineering, etc.
Computer vision is the science and technology of machines that see. As a scientific discipline, computer vision is concerned with the theory and technology for building artificial systems that obtain information from images. The image data can take many forms, such as a video sequence, views from multiple cameras, or multi-dimensional data from a medical scanner. As a technological discipline, computer vision seeks to apply the theories and models of computer vision to the construction of computer vision systems. Examples of applications of computer vision systems include systems for controlling processes (e.g. an industrial robot or an autonomous vehicle). Detecting events (e.g. for visual surveillance). Organizing information (e.g. for indexing databases of images and image sequences), Modeling objects or environments (e.g. industrial inspection, medical image analysis or topographical modeling), Interaction (e.g. as the input to a device for computer-human interaction). Computer vision can also be described as a complement (but not necessarily the opposite) of biological vision. In biological vision, the visual perception of humans and various animals are studied, resulting in models of how these systems operate in terms of physiological processes. Computer vision, on the other hand, studies and describes artificial vision system that are implemented in software and/or hardware. Interdisciplinary exchange between biological and computer vision has proven increasingly fruitful for both fields. Sub-domains of computer vision include scene reconstruction, event detection, tracking, object recognition, learning, indexing, ego-motion and image restoration. This new book presents leading-edge new research from around the world.
ICCV 2003 includes 43 full papers covering the latest research and progress in all areas of vision. The proceedings tackles necessary topics such as image representation, compression and coding, image segmentation, object recognition, active vision, 2D and 3D vision, sensing, and texture, color, and motion analysis.
The research book is a continuation of the authors’ previous works, which are focused on recent advances in computer vision methodologies and technical solutions using conventional and intelligent paradigms. The book gathers selected contributions addressing aerial and satellite image processing and related fields. Topics covered include novel tensor and wave models, a new comparative morphology scheme, warping compensation in video stabilization, image deblurring based on physical processes of blur impacts, and a rapid and robust core structural verification algorithm for feature extraction in images and videos, among others. All chapters focus on practical implementations. Given the tremendous interest among researchers in the development and applications of computer vision paradigms in the field of business, engineering, medicine, security and aviation, this book offers a timely guide.
Since its creation in 1884, Engineering Index has covered virtually every major engineering innovation from around the world. It serves as the historical record of virtually every major engineering innovation of the 20th century. Recent content is a vital resource for current awareness, new production information, technological forecasting and competitive intelligence. The world?s most comprehensive interdisciplinary engineering database, Engineering Index contains over 10.7 million records. Each year, over 500,000 new abstracts are added from over 5,000 scholarly journals, trade magazines, and conference proceedings. Coverage spans over 175 engineering disciplines from over 80 countries. Updated weekly.