Advances in Interdisciplinary Engineering

Advances in Interdisciplinary Engineering

Author: Niraj Kumar

Publisher: Springer Nature

Published: 2021-04-12

Total Pages: 838

ISBN-13: 9811599564

DOWNLOAD EBOOK

This book comprises the select proceedings of the International Conference on Future Learning Aspects of Mechanical Engineering (FLAME) 2020. This volume focuses on several emerging interdisciplinary areas involving mechanical engineering. Some of the topics covered include automobile engineering, mechatronics, applied mechanics, structural mechanics, hydraulic mechanics, human vibration, biomechanics, biomedical Instrumentation, ergonomics, biodynamic modeling, nuclear engineering, and agriculture engineering. The contents of this book will be useful for students, researchers as well as professionals interested in interdisciplinary topics of mechanical engineering.


Simulation, Modeling, and Programming for Autonomous Robots

Simulation, Modeling, and Programming for Autonomous Robots

Author: Itsuki Noda

Publisher: Springer

Published: 2012-10-20

Total Pages: 425

ISBN-13: 3642343279

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the Third International Conference on Simulation, Modeling, and Programming for Autonomous Robots, SIMPAR 2012, held in Tsukuba, Japan, in November 2012. The 33 revised full papers and presented together with 3 invited talks were carefully reviewed and selected from 46 submissions. Ten papers describe design of complex behaviors of autonomous robots, 9 address software layers, 8 papers refer to related modeling and learning. The papers are organized in topical sections on mobile robots, software modeling and architecture and humanoid and biped robots.


Unmanned Aerial Vehicles: Breakthroughs in Research and Practice

Unmanned Aerial Vehicles: Breakthroughs in Research and Practice

Author: Management Association, Information Resources

Publisher: IGI Global

Published: 2019-05-03

Total Pages: 581

ISBN-13: 1522583661

DOWNLOAD EBOOK

First used in military applications, unmanned aerial vehicles are becoming an integral aspect of modern society and are expanding into the commercial, scientific, recreational, agricultural, and surveillance sectors. With the increasing use of these drones by government officials, business professionals, and civilians, more research is needed to understand their complexity both in design and function. Unmanned Aerial Vehicles: Breakthroughs in Research and Practice is a critical source of academic knowledge on the design, construction, and maintenance of drones, as well as their applications across all aspects of society. Highlighting a range of pertinent topics such as intelligent systems, artificial intelligence, and situation awareness, this publication is an ideal reference source for military consultants, military personnel, business professionals, operation managers, surveillance companies, agriculturalists, policymakers, government officials, law enforcement, IT professionals, academicians, researchers, and graduate-level students.


Introduction To Lagrangian Dynamics

Introduction To Lagrangian Dynamics

Author: Aron Wolf Pila

Publisher: Springer

Published: 2019-08-02

Total Pages: 269

ISBN-13: 3030223787

DOWNLOAD EBOOK

This volume provides a short summary of the essentials of Lagrangian dynamics for practicing engineers and students of physics and engineering. It examines a range of phenomena and techniques in a style that is compact and succinct, while remaining comprehensive. The book provides a review of classical mechanics and coverage of critical topics including holonomic and non-holonomic systems, virtual work, the principle of d’Alembert for dynamical systems, the mathematics of conservative forces, the extended Hamilton’s principle, Lagrange’s equations and Lagrangian dynamics, a systematic procedure for generalized forces, quasi-coordinates, and quasi-velocities, Lagrangian dynamics with quasi-coordinates, Professor Ranjan Vepa’s approach and the Hamiltonian formulation. Adopting a step-by-step approach with examples throughout the book, this ready reference completely develops all of the relevant equations and is ideal for practicing mechanical, aeronautical, and civil engineers, physicists, and graduate/upper-level undergraduate students. Explains in detail the development of the theory behind Lagrangian dynamics in a practical fashion; Discusses virtual work, generalized forces, conservative forces, constraints, Extended Hamilton’s Principle and the Hamiltonian formulation; Presents two different approaches to the quasi-velocity method for non-holonomic constraints; Reinforces concepts presented with illustrative examples; Includes comprehensive coverage of the important topics of classical mechanics.


L1 Adaptive Control Theory

L1 Adaptive Control Theory

Author: Naira Hovakimyan

Publisher: SIAM

Published: 2010-09-30

Total Pages: 333

ISBN-13: 0898717043

DOWNLOAD EBOOK

Contains results not yet published in technical journals and conference proceedings.


Dynamic System Modelling and Analysis with MATLAB and Python

Dynamic System Modelling and Analysis with MATLAB and Python

Author: Jongrae Kim

Publisher: John Wiley & Sons

Published: 2022-10-18

Total Pages: 340

ISBN-13: 1119801621

DOWNLOAD EBOOK

Dynamic System Modeling & Analysis with MATLAB & Python A robust introduction to the advanced programming techniques and skills needed for control engineering In Dynamic System Modeling & Analysis with MATLAB & Python: For Control Engineers, accomplished control engineer Dr. Jongrae Kim delivers an insightful and concise introduction to the advanced programming skills required by control engineers. The book discusses dynamic systems used by satellites, aircraft, autonomous robots, and biomolecular networks. Throughout the text, MATLAB and Python are used to consider various dynamic modeling theories and examples. The author covers a range of control topics, including attitude dynamics, attitude kinematics, autonomous vehicles, systems biology, optimal estimation, robustness analysis, and stochastic system. An accompanying website includes a solutions manual as well as MATLAB and Python example code. Dynamic System Modeling & Analysis with MATLAB & Python: For Control Engineers provides readers with a sound starting point to learning programming in the engineering or biology domains. It also offers: A thorough introduction to attitude estimation and control, including attitude kinematics and sensors and extended Kalman filters for attitude estimation Practical discussions of autonomous vehicles mission planning, including unmanned aerial vehicle path planning and moving target tracking Comprehensive explorations of biological network modeling, including bio-molecular networks and stochastic modeling In-depth examinations of control algorithms using biomolecular networks, including implementation Dynamic System Modeling & Analysis with MATLAB & Python: For Control Engineers is an indispensable resource for advanced undergraduate and graduate students seeking practical programming instruction for dynamic system modeling and analysis using control theory.


Linear and Nonlinear System Modeling

Linear and Nonlinear System Modeling

Author: Tamal Roy

Publisher: John Wiley & Sons

Published: 2024-09-06

Total Pages: 242

ISBN-13: 1119847516

DOWNLOAD EBOOK

Written and edited by a team of experts in the field, this exciting new volume presents the cutting-edge techniques, latest trends, and state-of-the-art practical applications in linear and nonlinear system modeling. Mathematical modeling of control systems is, essentially, extracting the essence of practical problems into systematic mathematical language. In system modeling, mathematical expression deals with modeling and its applications. It is characterized that how a modeling competency can be categorized and its activity can contribute to building up these competencies. Mathematical modeling of a practical system is an attractive field of research and an advanced subject with a variety of applications. The main objective of mathematical modeling is to predict the behavior of the system under different operating conditions and to design and implement efficient control strategies to achieve the desired performance. A considerable effort has been directed to the development of models, which must be understandable and easy to analyze. It is a very difficult task to develop mathematical modeling of complicated practical systems considering all its possible high-level non-linearity and cross couple dynamics. Although mathematical modeling of nonlinear systems sounds quite interesting, it is difficult to formulate the general solution to analyze and synthesize nonlinear dynamical systems. Most of the natural processes are nonlinear, having very high computational complexity of several numerical issues. It is impossible to create any general solution or individual procedure to develop exact modeling of a non-linear system, which is often improper and too complex for engineering practices. Therefore, some series of approximation procedures are used, in order to get some necessary knowledge about the nonlinear system dynamics. There are several complicated mathematical approaches for solving these types of problems, such as functional analysis, differential geometry or the theory of nonlinear differential equations.


Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering

Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering

Author: Nicolas Gascoin

Publisher: Springer Nature

Published: 2020-09-26

Total Pages: 571

ISBN-13: 9811566194

DOWNLOAD EBOOK

This book gathers the best articles presented by researchers and industrial experts at the International Conference on “Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD 2020)”. The papers discuss new design concepts, and analysis and manufacturing technologies, with a focus on achieving improved performance by downsizing; improving the strength-to-weight ratio, fuel efficiency and operational capability at room and elevated temperatures; reducing wear and tear; addressing NVH aspects, while balancing the challenges of Euro VI/Bharat Stage VI emission norms, greenhouse effects and recyclable materials. Presenting innovative methods, this book is a valuable reference resource for professionals at educational and research organizations, as well as in industry, encouraging them to pursue challenging projects of mutual interest.


Nonlinear Dynamics and Control

Nonlinear Dynamics and Control

Author:

Publisher:

Published: 2020

Total Pages: 346

ISBN-13: 9783030347482

DOWNLOAD EBOOK

This second of three volumes from the inaugural NODYCON, held at the University of Rome, in February of 2019, presents papers devoted to Nonlinear Dynamics and Control. The collection features both well-established streams of research as well as novel areas and emerging fields of investigation. Topics in Volume II include influence of nonlinearities on vibration control systems; passive, semi-active, active control of structures and systems; synchronization; robotics and human-machine interaction; network dynamics control (multi-agent systems, leader-follower dynamics, swarm dynamics, biological networks dynamics); and fractional-order control.