Pyomo – Optimization Modeling in Python

Pyomo – Optimization Modeling in Python

Author: William E. Hart

Publisher: Springer Science & Business Media

Published: 2012-02-15

Total Pages: 245

ISBN-13: 146143226X

DOWNLOAD EBOOK

This book provides a complete and comprehensive reference/guide to Pyomo (Python Optimization Modeling Objects) for both beginning and advanced modelers, including students at the undergraduate and graduate levels, academic researchers, and practitioners. The text illustrates the breadth of the modeling and analysis capabilities that are supported by the software and support of complex real-world applications. Pyomo is an open source software package for formulating and solving large-scale optimization and operations research problems. The text begins with a tutorial on simple linear and integer programming models. A detailed reference of Pyomo's modeling components is illustrated with extensive examples, including a discussion of how to load data from data sources like spreadsheets and databases. Chapters describing advanced modeling capabilities for nonlinear and stochastic optimization are also included. The Pyomo software provides familiar modeling features within Python, a powerful dynamic programming language that has a very clear, readable syntax and intuitive object orientation. Pyomo includes Python classes for defining sparse sets, parameters, and variables, which can be used to formulate algebraic expressions that define objectives and constraints. Moreover, Pyomo can be used from a command-line interface and within Python's interactive command environment, which makes it easy to create Pyomo models, apply a variety of optimizers, and examine solutions. The software supports a different modeling approach than commercial AML (Algebraic Modeling Languages) tools, and is designed for flexibility, extensibility, portability, and maintainability but also maintains the central ideas in modern AMLs.


Pyomo — Optimization Modeling in Python

Pyomo — Optimization Modeling in Python

Author: William E. Hart

Publisher: Springer

Published: 2017-05-26

Total Pages: 280

ISBN-13: 3319588214

DOWNLOAD EBOOK

​This book provides a complete and comprehensive guide to Pyomo (Python Optimization Modeling Objects) for beginning and advanced modelers, including students at the undergraduate and graduate levels, academic researchers, and practitioners. Using many examples to illustrate the different techniques useful for formulating models, this text beautifully elucidates the breadth of modeling capabilities that are supported by Pyomo and its handling of complex real-world applications. This second edition provides an expanded presentation of Pyomo’s modeling capabilities, providing a broader description of the software that will enable the user to develop and optimize models. Introductory chapters have been revised to extend tutorials; chapters that discuss advanced features now include the new functionalities added to Pyomo since the first edition including generalized disjunctive programming, mathematical programming with equilibrium constraints, and bilevel programming. Pyomo is an open source software package for formulating and solving large-scale optimization problems. The software extends the modeling approach supported by modern AML (Algebraic Modeling Language) tools. Pyomo is a flexible, extensible, and portable AML that is embedded in Python, a full-featured scripting language. Python is a powerful and dynamic programming language that has a very clear, readable syntax and intuitive object orientation. Pyomo includes Python classes for defining sparse sets, parameters, and variables, which can be used to formulate algebraic expressions that define objectives and constraints. Moreover, Pyomo can be used from a command-line interface and within Python's interactive command environment, which makes it easy to create Pyomo models, apply a variety of optimizers, and examine solutions.


Operations Research and Cyber-Infrastructure

Operations Research and Cyber-Infrastructure

Author: John W. Chinneck

Publisher: Springer Science & Business Media

Published: 2009-01-05

Total Pages: 460

ISBN-13: 0387888438

DOWNLOAD EBOOK

Operations Research and Cyber-Infrastructure is the companion volume to the Eleventh INFORMS Computing Society Conference (ICS 2009), held in Charleston, South Carolina, from January 11 to 13, 2009. It includes 24 high-quality refereed research papers. As always, the focus of interest for ICS is the interface between Operations Research and Computer Science, and the papers in this volume reflect that interest. This is naturally an evolving area as computational power increases rapidly while decreasing in cost even more quickly, and the papers included here illustrate the wide range of topics at this interface.


Practical Python AI Projects

Practical Python AI Projects

Author: Serge Kruk

Publisher: Apress

Published: 2018-02-26

Total Pages: 287

ISBN-13: 1484234235

DOWNLOAD EBOOK

Discover the art and science of solving artificial intelligence problems with Python using optimization modeling. This book covers the practical creation and analysis of mathematical algebraic models such as linear continuous models, non-obviously linear continuous models,and pure linear integer models. Rather than focus on theory, Practical Python AI Projects, the product of the author's decades of industry teaching and consulting, stresses the model creation aspect; contrasting alternate approaches and practical variations. Each model is explained thoroughly and written to be executed. The source code from all examples in the book is available, written in Python using Google OR-Tools. It also includes a random problem generator, useful for industry application or study. What You Will Learn Build basic Python-based artificial intelligence (AI) applications Work with mathematical optimization methods and the Google OR-Tools (Optimization Tools) suite Create several types of projects using Python and Google OR-Tools Who This Book Is For Developers and students who already have prior experience in Python coding. Some prior mathematical experience or comfort level may be helpful as well.


Mixed Integer Nonlinear Programming

Mixed Integer Nonlinear Programming

Author: Jon Lee

Publisher: Springer Science & Business Media

Published: 2011-12-02

Total Pages: 687

ISBN-13: 1461419271

DOWNLOAD EBOOK

Many engineering, operations, and scientific applications include a mixture of discrete and continuous decision variables and nonlinear relationships involving the decision variables that have a pronounced effect on the set of feasible and optimal solutions. Mixed-integer nonlinear programming (MINLP) problems combine the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables. MINLP is one of the most flexible modeling paradigms available for optimization; but because its scope is so broad, in the most general cases it is hopelessly intractable. Nonetheless, an expanding body of researchers and practitioners — including chemical engineers, operations researchers, industrial engineers, mechanical engineers, economists, statisticians, computer scientists, operations managers, and mathematical programmers — are interested in solving large-scale MINLP instances.


Introduction to Computational Models with Python

Introduction to Computational Models with Python

Author: Jose M. Garrido

Publisher: CRC Press

Published: 2015-08-28

Total Pages: 492

ISBN-13: 1498712045

DOWNLOAD EBOOK

Introduction to Computational Models with Python explains how to implement computational models using the flexible and easy-to-use Python programming language. The book uses the Python programming language interpreter and several packages from the huge Python Library that improve the performance of numerical computing, such as the Numpy and Scipy m


Pyomo — Optimization Modeling in Python

Pyomo — Optimization Modeling in Python

Author: Michael L. Bynum

Publisher: Springer Nature

Published: 2021-05-01

Total Pages: 225

ISBN-13: 303068928X

DOWNLOAD EBOOK

This book provides a complete and comprehensive guide to Pyomo (Python Optimization Modeling Objects) for beginning and advanced modelers, including students at the undergraduate and graduate levels, academic researchers, and practitioners. Using many examples to illustrate the different techniques useful for formulating models, this text beautifully elucidates the breadth of modeling capabilities that are supported by Pyomo and its handling of complex real-world applications. In the third edition, much of the material has been reorganized, new examples have been added, and a new chapter has been added describing how modelers can improve the performance of their models. The authors have also modified their recommended method for importing Pyomo. A big change in this edition is the emphasis of concrete models, which provide fewer restrictions on the specification and use of Pyomo models. Pyomo is an open source software package for formulating and solving large-scale optimization problems. The software extends the modeling approach supported by modern AML (Algebraic Modeling Language) tools. Pyomo is a flexible, extensible, and portable AML that is embedded in Python, a full-featured scripting language. Python is a powerful and dynamic programming language that has a very clear, readable syntax and intuitive object orientation. Pyomo includes Python classes for defining sparse sets, parameters, and variables, which can be used to formulate algebraic expressions that define objectives and constraints. Moreover, Pyomo can be used from a command-line interface and within Python's interactive command environment, which makes it easy to create Pyomo models, apply a variety of optimizers, and examine solutions.


Mathematical Programming for Power Systems Operation

Mathematical Programming for Power Systems Operation

Author: Alejandro Garcés

Publisher: John Wiley & Sons

Published: 2021-12-01

Total Pages: 293

ISBN-13: 1119747287

DOWNLOAD EBOOK

Explore the theoretical foundations and real-world power system applications of convex programming In Mathematical Programming for Power System Operation with Applications in Python, Professor Alejandro Garces delivers a comprehensive overview of power system operations models with a focus on convex optimization models and their implementation in Python. Divided into two parts, the book begins with a theoretical analysis of convex optimization models before moving on to related applications in power systems operations. The author eschews concepts of topology and functional analysis found in more mathematically oriented books in favor of a more natural approach. Using this perspective, he presents recent applications of convex optimization in power system operations problems. Mathematical Programming for Power System Operation with Applications in Python uses Python and CVXPY as tools to solve power system optimization problems and includes models that can be solved with the presented framework. The book also includes: A thorough introduction to power system operation, including economic and environmental dispatch, optimal power flow, and hosting capacity Comprehensive explorations of the mathematical background of power system operation, including quadratic forms and norms and the basic theory of optimization Practical discussions of convex functions and convex sets, including affine and linear spaces, politopes, balls, and ellipsoids In-depth examinations of convex optimization, including global optimums, and first and second order conditions Perfect for undergraduate students with some knowledge in power systems analysis, generation, or distribution, Mathematical Programming for Power System Operation with Applications in Python is also an ideal resource for graduate students and engineers practicing in the area of power system optimization.


Modeling and Simulation in Python

Modeling and Simulation in Python

Author: Allen B. Downey

Publisher: No Starch Press

Published: 2023-05-30

Total Pages: 277

ISBN-13: 1718502176

DOWNLOAD EBOOK

Modeling and Simulation in Python teaches readers how to analyze real-world scenarios using the Python programming language, requiring no more than a background in high school math. Modeling and Simulation in Python is a thorough but easy-to-follow introduction to physical modeling—that is, the art of describing and simulating real-world systems. Readers are guided through modeling things like world population growth, infectious disease, bungee jumping, baseball flight trajectories, celestial mechanics, and more while simultaneously developing a strong understanding of fundamental programming concepts like loops, vectors, and functions. Clear and concise, with a focus on learning by doing, the author spares the reader abstract, theoretical complexities and gets right to hands-on examples that show how to produce useful models and simulations.


A Student's Guide to Python for Physical Modeling

A Student's Guide to Python for Physical Modeling

Author: Jesse M. Kinder

Publisher: Princeton University Press

Published: 2021-08-03

Total Pages: 241

ISBN-13: 0691223661

DOWNLOAD EBOOK

A fully updated tutorial on the basics of the Python programming language for science students Python is a computer programming language that has gained popularity throughout the sciences. This fully updated second edition of A Student's Guide to Python for Physical Modeling aims to help you, the student, teach yourself enough of the Python programming language to get started with physical modeling. You will learn how to install an open-source Python programming environment and use it to accomplish many common scientific computing tasks: importing, exporting, and visualizing data; numerical analysis; and simulation. No prior programming experience is assumed. This guide introduces a wide range of useful tools, including: Basic Python programming and scripting Numerical arrays Two- and three-dimensional graphics Animation Monte Carlo simulations Numerical methods, including solving ordinary differential equations Image processing Numerous code samples and exercises—with solutions—illustrate new ideas as they are introduced. This guide also includes supplemental online resources: code samples, data sets, tutorials, and more. This edition includes new material on symbolic calculations with SymPy, an introduction to Python libraries for data science and machine learning (pandas and sklearn), and a primer on Python classes and object-oriented programming. A new appendix also introduces command line tools and version control with Git.