This volume is the first collection of applications of proteomics to analyze various human body fluids. Proteomics of Human Bodyfluids consists of two parts. The first provides basic principles and strategies for proteomic analysis of human body fluids. The second offers more details regarding methodologies and recent findings and clinical applications of each specific type of human body fluids.
Proteomic and Metabolomic Approaches to Biomarker Discovery demonstrates how to leverage biomarkers to improve accuracy and reduce errors in research. Disease biomarker discovery is one of the most vibrant and important areas of research today, as the identification of reliable biomarkers has an enormous impact on disease diagnosis, selection of treatment regimens, and therapeutic monitoring. Various techniques are used in the biomarker discovery process, including techniques used in proteomics, the study of the proteins that make up an organism, and metabolomics, the study of chemical fingerprints created from cellular processes. Proteomic and Metabolomic Approaches to Biomarker Discovery is the only publication that covers techniques from both proteomics and metabolomics and includes all steps involved in biomarker discovery, from study design to study execution. The book describes methods, and presents a standard operating procedure for sample selection, preparation, and storage, as well as data analysis and modeling. This new standard effectively eliminates the differing methodologies used in studies and creates a unified approach. Readers will learn the advantages and disadvantages of the various techniques discussed, as well as potential difficulties inherent to all steps in the biomarker discovery process. A vital resource for biochemists, biologists, analytical chemists, bioanalytical chemists, clinical and medical technicians, researchers in pharmaceuticals, and graduate students, Proteomic and Metabolomic Approaches to Biomarker Discovery provides the information needed to reduce clinical error in the execution of research. - Describes the use of biomarkers to reduce clinical errors in research - Includes techniques from a range of biomarker discoveries - Covers all steps involved in biomarker discovery, from study design to study execution
Introduction to forensic proteomics -- A proteomics tutorial -- Proteomic sample preparation techniques : toward forensic proteomic applications -- NextGen serology : leveraging mass spectrometry for protein-based human body fluid identification -- Informatics approaches to forensic body fluid identification by proteomic mass spectrometry -- Fingermarks as a new proteomic specimen : state of the art and perspective of in situ proteomics -- Human identification using genetically variant peptides in biological forensic evidence -- Proteomics in the analysis of forensic, archaeological, and paleontological bone -- Proteomics for microbial forensics -- ISO 17025 accreditation of method-based mass spectrometry for bioforensic analyses -- Unambiguous identification of ricin and abrin with advanced mass spectrometric assays -- Challenges in the development of reference materials for protein toxins -- The statistical defensibility of forensic proteomics.
This detailed new edition presents the latest developments of the main pillars of protein analysis, namely sample preparation, separation, and characterization. Core areas in this volume are protocols for the analysis of post-translational modifications and protein interaction partners, followed by sophisticated procedures to enrich for extracellular vesicles and organelles, along with several types of protein immuno-assays complemented by various methods for the characterization of antibodies and host-cell protein analysis. Last but not least, a few standard sample preparation protocols and recent advances concerning immuno-chemical detection of proteins are included as well. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and up-to-date, Proteomic Profiling: Methods and Protocols, Second Edition serves as an ideal reference for students of biochemistry, biomedicine, biology, and genomics and will be an invaluable source for the experienced, practicing scientist as well.
With the completion of sequencing projects and the advancement of a- lytical tools for protein identification, proteomics—the study of the expressed part of the genome—has become a major region of the burgeoning field of functional genomics. High-resolution 2-D gels can reveal virtually all p- teins present in a cell or tissue at any given time, including posttranslationally modified proteins. Changes in the expression and structure of most cellular proteins caused by differentiation or external stimuli can be displayed and eventually identified using 2-D protein gels. 2-D Proteome Analysis Protocols covers all aspects of the use of 2-D protein electrophoresis for the analysis of biological problems. The contri- tors include many of the leaders in the fields of biochemistry and analytical chemistry who were instrumental in the development of high-resolution 2-D gels, immobilized pH gradients, computer analysis, and mass spectromet- based protein identification methodologies. This book is intended as a benchtop manual and guide both for novices to 2-D gels and for those aficionados who wish to try the newer techniques. Any group using protein biochemistry—especially in the fields of molecular biology, biochemistry, microbiology, and cell biology—should find this book eminently useful. 2-D Proteome Analysis Protocols takes the researcher through the c- plete process of working with 2-D protein gels from making the protein - tract to finally identifying the proteins of interest. It includes protocols for generating 2-D protein extracts from most of the standard model organisms, including bacteria, yeast, nematode, Drosophila, plants, mouse, and human.
Principles of Proteomics is designed specifically to explain the different stages of proteomic analysis, their complexities and their jargon to students and researchers in a non-technical overview of the field. The author describes the broad range of problems which proteomics can address, including structural proteomics, interaction proteomics, protein modification analysis and functional proteomics. Methodologies are described in user-friendly language, from the more traditional two-dimensional gel electrophoresis to the new developments in protein chip technologies. These are well presented in the context of overall strategies which can be adopted to address the different aspects of large-scale protein analysis.
Introduction to the proteome (K. L. Williams, D. F. Hochstrasser). Two-dimensional electrophoresis: the state of the art and future directions (B. R. Herbert, J.-C. Sanchez, L. Bini). large-scale comparative protein modeling ( M. C. Peitsch, N. Guex); Clinical and biomedical applications of proteomics (D. F. Hochstrasser). Biological applications of proteomics (K. L. Williams, V. Pallini). Conclusions (D. F. Hochstrasser, L. Williams). Index.
This volume focuses on protein analysis, and covers a wide array of uses of protein microarray for disease analysis. The chapters in this book discuss different stages of protein microarrays from their construction to their use, including different types of protein microarrays such as recombinant proteins, antibody, phage, and NAPPA protein microarrays, in planar format or in solution via beads arrays. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and cutting-edge, Protein Microarrays for Disease Analysis: Methods and Protocols is a valuable resource for graduate and post-doctoral fellows interested in protein microarrays, as well as senior researchers interested in gaining more insight into this developing field.
Part of the Functional Food Science and Technology book series (Series Editor: Fereidoon Shahidi), this book compiles the current science based upon nutrigenomics and proteomics in food and health. Coverage includes many important nutraceuticals (food factors) and their impact on gene interaction and health. Authored by a stellar international team of multidisciplinary researchers, this book acquaints food and nutrition professionals with these new fields of nutrition research and conveys the state of the science to date.
An update to the popular guide to proteomics technology applications in biomedical research Building on the strength of the original edition, this book presents the state of the art in the field of proteomics and offers students and scientists new tools and techniques to advance their own research. Written by leading experts in the field, it provides readers with an understanding of new and emerging directions for proteomics research and applications. Proteomics for Biological Discovery begins by discussing the emergence of proteomics technologies and summarizing the potential insights to be gained from proteome-level research. The tools of proteomics, from conventional to novel techniques, are thoroughly covered, from underlying concepts to limitations and future directions. Later chapters provide an overview of the current developments in post-translational modification studies, structural proteomics, biochemical proteomics, applied proteomics, and bioinformatics relevant to proteomics. Chapters cover: Quantitative Proteomics for Differential Protein Expression Profiling; Protein Microarrays; Protein Biomarker Discovery; Biomarker Discovery using Mass Spectrometry Imaging; Protein-Protein Interactions; Mass Spectrometry Of Intact Protein Complexes; Crosslinking Applications in Structural Proteomics; Functional Proteomics; High Resolution Interrogation of Biological Systems via Mass Cytometry; Characterization of Drug-Protein Interactions by Chemoproteomics; Phosphorylation; Large-Scale Phosphoproteomics; and Probing Glycoforms of Individual Proteins Using Antibody-Lectin Sandwich Arrays. Presents a comprehensive and coherent review of the major issues in proteomic technology development, bioinformatics, strategic approaches, and applications Chapters offer a rigorous overview with summary of limitations, emerging approaches, questions, and realistic future industry and basic science applications Features new coverage of mass spectrometry for high throughput proteomic measurements, and novel quantitation strategies such as spectral counting and stable isotope labeling Discusses higher level integrative aspects, including technical challenges and applications for drug discovery Offers new chapters on biomarker discovery, global phosphorylation analysis, proteomic profiling using antibodies, and single cell mass spectrometry Proteomics for Biological Discovery is an excellent advanced resource for graduate students, postdoctoral fellows, and scientists across all the major fields of biomedical science.