15 chapters on protein phosphorylation and human health written by expert scientists. Covers most important research hot points, such as Akt, AMPK and mTOR. Bridges the basic protein phosphorylation pathways with human health and diseases. Detailed and comprehensive text with excellent figure illustration.
15 chapters on protein phosphorylation and human health written by expert scientists. Covers most important research hot points, such as Akt, AMPK and mTOR. Bridges the basic protein phosphorylation pathways with human health and diseases. Detailed and comprehensive text with excellent figure illustration.
Protein kinases are fascinating enzymes that maintain the proper function of nearly every task performed by the cells of the human body. By extracting a phosphate from the energy molecule ATP and linking it to another protein, protein kinases alter the structure and ultimate function of other proteins. In this way, protein kinases help monitor the extracellular environment and integrate signaling cues that, for the most part, are beneficial for human health and survival. However, protein kinases are often dysregulated and responsible for the initiation and progression of many types of cancers, inflammatory disorders, and other diseases. Thus, decades of research have revealed much about how protein kinases are regulated and approaches to inhibit these enzymes to treat disease. However, nearly 30 years since the identification of the first clinically beneficial small molecule protein kinase inhibitor, there are only a few examples where these drugs provide sustained and durable patient responses. The goal of this book is to provide biomedical scientists, graduate, and professional degree students insight into different approaches using small molecules to block specific protein kinase functions that promote disease.
Protein kinase A (PKA) is an enzyme that modulates the function of other proteins and thus is involved in many processes responsible for cellular regulation. This volume follows the discovery of the first human genetic disorder that is caused by mutations of one of the sub-units of the PKA system. It brings together clinical and basic scientists for an examination of the enzyme and its involvement in human disease.
Basic Neurochemistry, Eighth Edition, is the updated version of the outstanding and comprehensive classic text on neurochemistry. For more than forty years, this text has been the worldwide standard for information on the biochemistry of the nervous system, serving as a resource for postgraduate trainees and teachers in neurology, psychiatry, and basic neuroscience, as well as for medical, graduate, and postgraduate students and instructors in the neurosciences. The text has evolved, as intended, with the science. This new edition continues to cover the basics of neurochemistry as in the earlier editions, along with expanded and additional coverage of new research from intracellular trafficking, stem cells, adult neurogenesis, regeneration, and lipid messengers. It contains expanded coverage of all major neurodegenerative and psychiatric disorders, including the neurochemistry of addiction, pain, and hearing and balance; the neurobiology of learning and memory; sleep; myelin structure, development, and disease; autism; and neuroimmunology. - Completely updated text with new authors and material, and many entirely new chapters - Over 400 fully revised figures in splendid color - 61 chapters covering the range of cellular, molecular and medical neuroscience - Translational science boxes emphasizing the connections between basic and clinical neuroscience - Companion website at http://elsevierdirect.com/companions/9780123749475
This volume details the current understanding of roles and regulation on histidine phosphorylation, describing methods for the characterization of protein phosphorylation on histidine. Chapters guide readers through in vitro systems, cell-based systems, comprehensive background review articles on histidine kinases and phosphatases. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Histidine Phosphorylation: Methods and Protocols aims to ensure successful results in the further study of this rapidly growing field.
Signal transduction comprises the intracellular biochemical signals which induce the appropriate cell response to an external stimulus. The players in signal transduction are diverse, from small molecules as first messengers, to proteins, receptors, transcription factors, among many others. The different signaling pathways and the crosstalk between them originates the unique signaling profile of every cell type in the human body. The cell signaling specificity depends on several aspects including protein composition, subcellular localization and complexes and gene promoters. This textbook provides a comprehensive overview of the specific signaling pathways on a variety of human tissues. This information can be of great value for health science researchers, professionals and students to understand key pathways for tissue-specific functions in the plethora of signals, signals receptors, transducers and effectors. Chapter 3 and 15 are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Oxidants, Antioxidants and Impact of the Oxidative Status in Male Reproduction is an essential reference for fertility practitioners and research and laboratory professionals interested in learning about the role of reactive oxygen species in sperm physiology and pathology. The book focuses on unravelling the pathophysiology of oxidative stress mediated male infertility, recruiting top researchers and clinicians to contribute chapters. This collection of expertise delves into the physico-chemical aspects of oxidative stress, including a new focus on reductive stress. Furthermore, the inclusion of clinical techniques to determine oxidative stress and the OMICS of reductive oxidative stress are also included. This is a must-have reference in the area of oxidative stress and male reproductive function. - Offers comprehensive information on oxidative stress and its role in male reproduction, including new therapeutic approaches - Deals with current approaches to oxidative stress using OMICS platform - Designed for fertility practitioners, reproductive researchers, and laboratory professionals interested in learning about the role of reactive oxygen species in sperm physiology and pathology
Neurofibrillary tangles (NFTs) composed of intracellular aggregates of tau protein are a key neuropathological feature of Alzheimer’s Disease (AD) and other neurodegenerative diseases, collectively termed tauopathies. The abundance of NFTs has been reported to correlate positively with the severity of cognitive impairment in AD. However, accumulating evidences derived from studies of experimental models have identified that NFTs themselves may not be neurotoxic. Now, many of tau researchers are seeking a “toxic” form of tau protein. Moreover, it was suggested that a “toxic” tau was capable to seed aggregation of native tau protein and to propagate in a prion-like manner. However, the exact neurotoxic tau species remain unclear. Because mature tangles seem to be non-toxic component, “tau oligomers” as the candidate of “toxic” tau have been investigated for more than one decade. In this topic, we will discuss our consensus of “tau oligomers” because the term of “tau oligomers” [e.g. dimer (disulfide bond-dependent or independent), multimer (more than dimer), granular (definition by EM or AFM) and maybe small filamentous aggregates] has been used by each researchers definition. From a biochemical point of view, tau protein has several unique characteristics such as natively unfolded conformation, thermo-stability, acid-stability, and capability of post-translational modifications. Although tau protein research has been continued for a long time, we are still missing the mechanisms of NFT formation. It is unclear how the conversion is occurred from natively unfolded protein to abnormally mis-folded protein. It remains unknown how tau protein can be formed filaments [e.g. paired helical filament (PHF), straight filament and twisted filament] in cells albeit in vitro studies confirmed tau self-assembly by several inducing factors. Researchers are still debating whether tau oligomerization is primary event rather than tau phosphorylation in the tau pathogenesis. Inhibition of either tau phosphorylation or aggregation has been investigated for the prevention of tauopathies, however, it will make an irrelevant result if we don’t know an exact target of neurotoxicity. It is a time to have a consensus of definition, terminology and methodology for the identification of “tau oligomers”.