This book is the first example in presenting LC-MS strategies for the analysis of peptides and proteins with detailed information and hints about the needs and problems described from experts on-the-job. The best advantage is -for sure- the practical insight of experienced analysts into their novel protein analysis techniques. Readers starting in 'Proteomics' should be able to repeat each experiment with own equipment and own protein samples, like clean-up, direct protein analysis, after (online) digest, with modifications and others. Furthermore, the reader will learn more about strategies in protein analysis, like quantitative analysis, industrial standards, functional analysis and more.
This book is the first example in presenting LC-MS strategies for the analysis of peptides and proteins with detailed information and hints about the needs and problems described from experts on-the-job. The best advantage is -for sure- the practical insight of experienced analysts into their novel protein analysis techniques. Readers starting in 'Proteomics' should be able to repeat each experiment with own equipment and own protein samples, like clean-up, direct protein analysis, after (online) digest, with modifications and others. Furthermore, the reader will learn more about strategies in protein analysis, like quantitative analysis, industrial standards, functional analysis and more.
With the development of new quantitative strategies and powerful bioinformatics tools to cope with the analysis of the large amounts of data generated in proteomics experiments, liquid chromatography with tandem mass spectrometry (LC-MS/MS) is making possible the analysis of proteins on a global scale, meaning that proteomics can now start competing with cDNA microarrays for the analysis of whole genomes. In LC-MS/MS in Proteomics: Methods and Applications, experts in the field provide protocols and up-to-date reviews of the applications of LC-MS/MS, with a particular focus on MS-based methods of protein and peptide quantification and the analysis of post-translational modifications. Beginning with overviews of the use of LC-M/MS in protein analysis, the book continues with topics such as protocols for the analysis of post-translational modifications, with particular focus on phosphorylation and glycosylation, popular techniques for quantitative proteomics, such as multiple reaction monitoring, metabolic labelling, and chemical tagging, biomarker discovery in biological fluids, as well as novel applications of LC-MS/MS. Written in the highly successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective subjects, lists of necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Comprehensive and cutting-edge, LC-MS/MS in Proteomics: Methods and Applications presents the techniques and concepts necessary in order to aid proteomic practitioners in the application of LC-MS/MS to essentially any biological problem.
In this, the post-genomic age, our knowledge of biological systems continues to expand and progress. As the research becomes more focused, so too does the data. Genomic research progresses to proteomics and brings us to a deeper understanding of the behavior and function of protein clusters. And now proteomics gives way to neuroproteomics as we beg
Revised and Expanded Handbook Provides Comprehensive Introduction and Complete Instruction for Sample Preparation in Vital Category of Bioanalysis Following in the footsteps of the previously published Handbook of LC-MS Bioanalysis, this book is a thorough and timely guide to all important sample preparation techniques used for quantitative Liquid Chromatography–Mass Spectrometry (LC-MS) bioanalysis of small and large molecules. LC-MS bioanalysis is a key element of pharmaceutical research and development, post-approval therapeutic drug monitoring, and many other studies used in human healthcare. While advances are continually being made in key aspects of LC-MS bioanalysis such as sensitivity and throughput, the value of research/study mentioned above is still heavily dependent on the availability of high-quality data, for which sample preparation plays the critical role. Thus, this text provides researchers in industry, academia, and regulatory agencies with detailed sample preparation techniques and step-by-step protocols on proper extraction of various analyte(s) of interest from biological samples for LC-MS quantification, in accordance with current health authority regulations and industry best practices. The three sections of the book with a total of 26 chapters cover topics that include: Current basic sample preparation techniques (e.g., protein precipitation, liquid-liquid extraction, solid-phase extraction, salting-out assisted liquid-liquid extraction, ultracentrifugation and ultrafiltration, microsampling, sample extraction via electromembranes) Sample preparation techniques for uncommon biological matrices (e.g., tissues, hair, skin, nails, bones, mononuclear cells, cerebrospinal fluid, aqueous humor) Crucial aspects of LC-MS bioanalytical method development (e.g., pre-analytical considerations, derivation strategies, stability, non-specific binding) in addition to sample preparation techniques for challenging molecules (e.g., lipids, peptides, proteins, oligonucleotides, antibody-drug conjugates) Sample Preparation in LC-MS Bioanalysis will prove a practical and highly valuable addition to the reference shelves of scientists and related professionals in a variety of fields, including pharmaceutical and biomedical research, mass spectrometry, and analytical chemistry, as well as practitioners in clinical pharmacology, toxicology, and therapeutic drug monitoring.
Describes and integrates the techniques of many advances in both chromatographic and mass spectrometric technologies. This book also covers various biophysical applications, such as H/D exchange for study of conformations, protein-protein and protein-metal and ligand interactions. It also describes atto-to-zepto-mole quantitation of 14C and 3H.
The definitive guide to peptidomics- a hands-on lab reference The first truly comprehensive book about peptidomics for protein and peptide analysis, this reference provides a detailed description of the hows and whys of peptidomics and how the techniques have evolved. With chapters contributed by leading experts, it covers naturally occurring peptides, peptidomics methods and new developments, and the peptidomics approach to biomarker discovery. Explaining both the principles and the applications, Peptidomics: Methods and Applications: * Features examples of applications in diverse fields, including pharmaceutical science, toxicity biomarkers, and neuroscience * Details the successful peptidomic analyses of biological material ranging from plants to mammals * Describes a cross section of analytical techniques, including traditional methodologies, emerging trends, and new techniques for high throughput approaches An enlightening reference for experienced professionals, this book is sufficiently detailed to serve as a step-by-step guide for beginning researchers and an excellent resource for students taking biotechnology and proteomics courses. It is an invaluable reference for protein chemists and biochemists, professionals and researchers in drug and biopharmaceutical development, analytical and bioanalytical chemists, toxicologists, and others.
This long-awaited first guide to sample preparation for proteomics studies overcomes a major bottleneck in this fast growing technique within the molecular life sciences. By addressing the topic from three different angles -- sample, method and aim of the study -- this practical reference has something for every proteomics researcher. Following an introduction to the field, the book looks at sample preparation for specific techniques and applications and finishes with a section on the preparation of sample types. For each method described, a summary of the pros and cons is given, as well as step-by-step protocols adaptable to any specific proteome analysis task.
This volume aims to provide a timely view of the state-of-the-art in systems biology. The editors take the opportunity to define systems biology as they and the contributing authors see it, and this will lay the groundwork for future studies. The volume is well-suited to both students and researchers interested in the methods of systems biology. Although the focus is on plant systems biology, the proposed material could be suitably applied to any organism.
This extensive volume covers basic and advanced aspects of peptide antibody production, characterization and uses. Although peptide antibodies have been available for many years, they continue to be a field of active research and method development. For example, peptide antibodies which are dependent on specific posttranslational modifications are of great interest, such as phosphorylation, citrullination and others, while different forms of recombinant peptide antibodies are gaining interest, notably nanobodies, single chain antibodies, TCR-like antibodies, among others. Within this volume, those areas are covered, as well as several technical and scientific advances: solid phase peptide synthesis, peptide carrier conjugation and immunization, genomics, transcriptomics, proteomics and elucidation of the molecular basis of antigen presentation and recognition by dendritic cells, macrophages, B cells and T cells. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and tips on troubleshooting and avoiding known pitfalls. Comprehensive and authoritative, Peptide Antibodies: Methods and Protocols serves as an ideal reference for researchers exploring this vital and expansive area of study.