Science, Technology, Engineering, and Mathematics (Stem) Education

Science, Technology, Engineering, and Mathematics (Stem) Education

Author: Heather B. Gonzalez

Publisher: Createspace Independent Pub

Published: 2012-08-10

Total Pages: 40

ISBN-13: 9781479106103

DOWNLOAD EBOOK

The term “STEM education” refers to teaching and learning in the fields of science, technology, engineering, and mathematics. It typically includes educational activities across all grade levels—from pre-school to post-doctorate—in both formal (e.g., classrooms) and informal (e.g., afterschool programs) settings. Federal policymakers have an active and enduring interest in STEM education and the topic is frequently raised in federal science, education, workforce, national security, and immigration policy debates. For example, more than 200 bills containing the term “science education” were introduced between the 100th and 110th congresses. The United States is widely believed to perform poorly in STEM education. However, the data paint a complicated picture. By some measures, U.S. students appear to be doing quite well. For example, overall graduate enrollments in science and engineering (S&E) grew 35% over the last decade. Further, S&E enrollments for Hispanic/Latino, American Indian/Alaska Native, and African American students (all of whom are generally underrepresented in S&E) grew by 65%, 55%, and 50%, respectively. On the other hand, concerns remain about persistent academic achievement gaps between various demographic groups, STEM teacher quality, the rankings of U.S. students on international STEM assessments, foreign student enrollments and increased education attainment in other countries, and the ability of the U.S. STEM education system to meet domestic demand for STEM labor. Various attempts to assess the federal STEM education effort have produced different estimates of its scope and scale. Analysts have identified between 105 and 252 STEM education programs or activities at 13 to 15 federal agencies. Annual federal appropriations for STEM education are typically in the range of $2.8 billion to $3.4 billion. All published inventories identify the Department of Education, National Science Foundation, and Health and Human Services as key agencies in the federal effort. Over half of federal STEM education funding is intended to serve the needs of postsecondary schools and students; the remainder goes to efforts at the kindergarten-through-Grade 12 level. Much of the funding for post-secondary students is in the form of financial aid. Federal STEM education policy concerns center on issues that relate to STEM education as a whole—such as governance of the federal effort and broadening participation of underrepresented populations—as well as those that are specific to STEM education at the elementary, secondary, and postsecondary levels. Governance concerns focus on perceived duplication and lack of coordination in the federal effort; broadening participation concerns tend to highlight achievement gaps between various demographic groups. Analysts suggest a variety of policy proposals in elementary, secondary, and postsecondary STEM education. At the K-12 level, these include proposals to address teacher quality, accountability, and standards. At the post-secondary level, proposals center on efforts to remediate and retain students in STEM majors. This report is intended to serve as a primer for outlining existing STEM education policy issues and programs. It includes assessments of the federal STEM education effort and the condition of STEM education in the United States, as well as an analysis of several of the policy issues central to the contemporary federal conversation about STEM education. Appendix A contains frequently cited data and sources and Appendix B includes a selection of major STEM-related acts.


The Age of STEM

The Age of STEM

Author: Brigid Freeman

Publisher: Routledge

Published: 2014-10-24

Total Pages: 327

ISBN-13: 1317663675

DOWNLOAD EBOOK

Across the world STEM (learning and work in Science, Technology, Engineering and Mathematics) has taken central importance in education and the economy in a way that few other disciplines have. STEM competence has become seen as key to higher productivity, technological adaptation and research-based innovation. No area of educational provision has a greater current importance than the STEM disciplines yet there is a surprising dearth of comprehensive and world-wide information about STEM policy, participation, programs and practice. The Age of STEM is a state of the art survey of the global trends and major country initiatives in STEM. It gives an international overview of issues such as: STEM strategy and coordination curricula, teaching and assessment women in STEM indigenous students research training STEM in the graduate labour markets STEM breadth and STEM depth The individual chapters give comparative international analysis as well as a global overview, particularly focusing on the growing number of policies and practices in mobilising and developing talent in the STEM fields. The book will be of particular interest to anyone involved in educational policy, those in education management and leaders in both schooling and tertiary education. It will have a wider resonance among practitioners in the STEM disciplines, particularly at university level, and for those interested in contemporary public policy.


Assuring the U.S. Department of Defense a Strong Science, Technology, Engineering, and Mathematics (STEM) Workforce

Assuring the U.S. Department of Defense a Strong Science, Technology, Engineering, and Mathematics (STEM) Workforce

Author: National Research Council

Publisher: National Academies Press

Published: 2012-10-31

Total Pages: 157

ISBN-13: 030926216X

DOWNLOAD EBOOK

The ability of the nation's military to prevail during future conflicts, and to fulfill its humanitarian and other missions, depends on continued advances in the nation's technology base. A workforce with robust Science, Technology, Engineering and Mathematics (STEM) capabilities is critical to sustaining U.S. preeminence. Today, however, the STEM activities of the Department of Defense (DOD) are a small and diminishing part of the nation's overall science and engineering enterprise. Assuring the U.S. Department of Defense a Strong Science, Technology, Engineering, and Mathematics (STEM) Workforce presents five principal recommendations for attracting, retaining, and managing highly qualified STEM talent within the department based on an examination of the current STEM workforce of DOD and the defense industrial base. As outlined in the report, DOD should focus its investments to ensure that STEM competencies in all potentially critical, emerging topical areas are maintained at least at a basic level within the department and its industrial and university bases.


The BERA/SAGE Handbook of Educational Research

The BERA/SAGE Handbook of Educational Research

Author: Dominic Wyse

Publisher: SAGE

Published: 2016-12-15

Total Pages: 1356

ISBN-13: 1473987997

DOWNLOAD EBOOK

Education has continued to grow in stature and significance as an academic discipline. In addition to world renowned research studies the growth of education has been seen in the methodology and methods underpinning its research. The BERA/SAGE Handbook of Educational Research provides a cutting edge account of the research and methodology that is creating new understandings for education research, policy and practice. Over two volumes, the handbook addresses educational research in six essential components: Section 1: Understanding Research Section 2: Planning Research Section 3: Approaches to Research Section 4: Acquiring Data Section 5: Analysing Data Section 6: Reporting, Disseminating and Evaluating Research Featuring contributions from more than 50 of the biggest names in the international field, The BERA/SAGE Handbook of Educational Research represents a very significant contribution to the development of education.


STEM Models of Success

STEM Models of Success

Author: J. Luke Wood

Publisher: IAP

Published: 2014-03-01

Total Pages: 299

ISBN-13: 1623964830

DOWNLOAD EBOOK

As the U.S. focuses on positioning itself to retain and advance its status as a world leader in technology and scientific innovation, a recognition that community colleges are a critical site for intervention has become apparent. Community colleges serve the lion’s share of the nation’s postsecondary students. In fact, 40% of all undergraduate students are enrolled in community colleges, these students account for nearly 30% of all STEM undergraduate majors in postsecondary institutions. These students serve as a core element of the STEM pipeline into four-year colleges and universities via the community college transfer function. Moreover, community colleges are the primary postsecondary access point for non-traditional students, including students of color, first-generation, low-income, and adult students. This is a particularly salient point given that these populations are sordidly underrepresented among STEM graduates and in the STEM workforce. Increasing success among these populations can contribute significantly to advancing the nation’s interests in STEM. As such, the community college is situated as an important site for innovative practices that have strong implications for bolstering the nation’s production and sustenance of a STEM labor force. In recognition of this role, the National Science Foundation and private funding agencies have invested millions of dollars into research and programs designed to bolster the STEM pipeline. From this funding and other independently sponsored inquiry, promising programs, initiatives, and research recommendations have been identified. These efforts hold great promise for change, with the potential to transform the education and outcome of STEM students at all levels. This important book discusses many of these promising programs, initiatives, and research-based recommendations that can impact the success of STEM students in the community college. This compilation is timely, on the national landscape, as the federal government has placed increasing importance on improving STEM degree production as a strategy for America’s future stability in an increasingly competitive global marketplace. Informed by research and theory, each chapter in this volume blazes new territory in articulating how community colleges can advance outcomes for students in STEM, particularly those from historically underrepresented and underserved communities.


Cracking the code

Cracking the code

Author: UNESCO

Publisher: UNESCO Publishing

Published: 2017-09-04

Total Pages: 82

ISBN-13: 9231002333

DOWNLOAD EBOOK

This report aims to 'crack the code' by deciphering the factors that hinder and facilitate girls' and women's participation, achievement and continuation in science, technology, engineering and mathematics (STEM) education and, in particular, what the education sector can do to promote girls' and women's interest in and engagement with STEM education and ultimately STEM careers.


Successful K-12 STEM Education

Successful K-12 STEM Education

Author: National Research Council

Publisher: National Academies Press

Published: 2011-06-22

Total Pages: 44

ISBN-13: 0309213002

DOWNLOAD EBOOK

Science, technology, engineering, and mathematics (STEM) are cultural achievements that reflect our humanity, power our economy, and constitute fundamental aspects of our lives as citizens, consumers, parents, and members of the workforce. Providing all students with access to quality education in the STEM disciplines is important to our nation's competitiveness. However, it is challenging to identify the most successful schools and approaches in the STEM disciplines because success is defined in many ways and can occur in many different types of schools and settings. In addition, it is difficult to determine whether the success of a school's students is caused by actions the school takes or simply related to the population of students in the school. Successful K-12 STEM Education defines a framework for understanding "success" in K-12 STEM education. The book focuses its analysis on the science and mathematics parts of STEM and outlines criteria for identifying effective STEM schools and programs. Because a school's success should be defined by and measured relative to its goals, the book identifies three important goals that share certain elements, including learning STEM content and practices, developing positive dispositions toward STEM, and preparing students to be lifelong learners. A successful STEM program would increase the number of students who ultimately pursue advanced degrees and careers in STEM fields, enhance the STEM-capable workforce, and boost STEM literacy for all students. It is also critical to broaden the participation of women and minorities in STEM fields. Successful K-12 STEM Education examines the vast landscape of K-12 STEM education by considering different school models, highlighting research on effective STEM education practices, and identifying some conditions that promote and limit school- and student-level success in STEM. The book also looks at where further work is needed to develop appropriate data sources. The book will serve as a guide to policy makers; decision makers at the school and district levels; local, state, and federal government agencies; curriculum developers; educators; and parent and education advocacy groups.