This volume presents papers from the conferences given at the University of Metz in 1992, and presents some recent advances in various important domains of partial differential equations and applied mathematics. A special attempt has been made to make this work accessible to young researchers and non-specialists.
This Research Note presents some recent advances in various important domains of partial differential equations and applied mathematics, in particular for calculus of variations and fluid flows. These topics are now part of various areas of science and have experienced tremendous development during the last decades.
The numerous applications of partial differential equations to problems in physics, mechanics, and engineering keep the subject an extremely active and vital area of research. With the number of researchers working in the field, advances-large and small-come frequently. Therefore, it is essential that mathematicians working in partial differential equations and applied mathematics keep abreast of new developments. Progress in Partial Differential Equations, presents some of the latest research in this important field. Both volumes contain the lectures and papers of top international researchers contributed at the Third European Conference on Elliptic and Parabolic Problems. In addition to the general theory of elliptic and parabolic problems, the topics covered at the conference include: applications free boundary problems fluid mechanics ogeneral evolution problems calculus of variations ohomogenization omodeling numerical analysis. The research notes in these volumes offer a valuable update on the state-of-the-art in this important field of mathematics.
This Research Note collects reports of the invited plenary addresses given during the conference Elliptic and Parabolic Partial Differential Equations and Applications held in Capri, Italy, 19-23 September 1994. The conference was devoted to new developments in partial differential equations of elliptic and parabolic type and to their applications in various fields.
Module theory is an important tool for many different branches of mathematics, as well as being an interesting subject in its own right. Within module theory, the concept of injective modules is particularly important. Extending modules form a natural class of modules which is more general than the class of injective modules but retains many of its
This book is the first to offer a general discussion on the cupling methods for nonliner problems, and provides all material necessary for an introductory course on the subject. Readers are assumed to have only a basic knowledge of applied functional analysis and partial differential equations at graduate level. This book can be used as an advanced graduate text as well as a reference for specialists working in the areas of partial differential equations, boundary integral equations and scientific computing. This book will be of particular interest to students and researchers in applied mathematics, numerical analysis and partial differential equations.
Results from the now-classical distribution theory involving convolution and Fourier transformation are extended to cater for Colombeau's generalized functions. Indications are given how these particular generalized functions can be used to investigate linear equations and pseudo differential operators. Furthermore, applications are also given to problems with nonregular data.
This monograph is unique in its treatment of the application of methods of nonstandard analysis to the theory of curves in the calculus of variations. It will be of particular value to researchers in the calculus of variations and optimal control theory.