Progress in Nonequilibrium Green's Functions

Progress in Nonequilibrium Green's Functions

Author: Michael Bonitz

Publisher: World Scientific

Published: 2000

Total Pages: 594

ISBN-13: 9789810242183

DOWNLOAD EBOOK

Equilibrium and nonequilibrium properties of correlated many-body systems are of growing interest in many fields of physics, including condensed matter, dense plasmas, nuclear matter and particles. The most powerful and general method which applies equally to all these areas is given by quantum field theory.Written by the leading experts and understandable to non-specialists, this book provides an overview on the basic ideas and concepts of the method of nonequilibrium Green's functions. It is complemented by modern applications of the method to a variety of topics, such as optics and transport in dense plasmas and semiconductors; correlations, bound states and coherence; strong field effects and short-pulse lasers; nuclear matter and QCD.Authors include: Gordon Bayan, Pawel Danielewicz, Don DuBois, Hartmut Haug, Klaus Henneberger, Antti-Pekka Jauho, J”rn Kuoll, Dietrich Kremp, Pavel Lipavsky and Paul C Martin.


Proceedings of the Conference, Progress in Nonequilibrium Green's Functions, Dresden, Germany, 19-23 August 2002

Proceedings of the Conference, Progress in Nonequilibrium Green's Functions, Dresden, Germany, 19-23 August 2002

Author: Michael Bonitz

Publisher: World Scientific

Published: 2003

Total Pages: 556

ISBN-13: 9789812705129

DOWNLOAD EBOOK

Equilibrium and nonequilibrium properties of correlated many-body systems are of growing interest in many areas of physics, including condensed matter, dense plasmas, nuclear matter and particles. The most powerful and general method which is equally applied to all these areas is given by quantum field theory. This book provides an overview of the basic ideas and concepts of the method of nonequilibrium Green''s functions, written by the leading experts and presented in a way accessible to non-specialists and graduate students. It is complemented by invited review papers on modern applications of the method to a variety of topics, such as optics and quantum transport in semiconductors; superconductivity; strong field effects, QCD, and state-of-the-art computational concepts OCo from Green''s functions to quantum Monte Carlo and time-dependent density functional theory.The proceedings have been selected for coverage in: OCo Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)"


Progress In Nonequilibrium Green's Functions, Sep 99, Germany

Progress In Nonequilibrium Green's Functions, Sep 99, Germany

Author: Michael Bonitz

Publisher: World Scientific

Published: 2000-05-11

Total Pages: 586

ISBN-13: 9814493619

DOWNLOAD EBOOK

Equilibrium and nonequilibrium properties of correlated many-body systems are of growing interest in many fields of physics, including condensed matter, dense plasmas, nuclear matter and particles. The most powerful and general method which applies equally to all these areas is given by quantum field theory.Written by the leading experts and understandable to non-specialists, this book provides an overview on the basic ideas and concepts of the method of nonequilibrium Green's functions. It is complemented by modern applications of the method to a variety of topics, such as optics and transport in dense plasmas and semiconductors; correlations, bound states and coherence; strong field effects and short-pulse lasers; nuclear matter and QCD.Authors include: Gordon Bayan, Pawel Danielewicz, Don DuBois, Hartmut Haug, Klaus Henneberger, Antti-Pekka Jauho, Jörn Kuoll, Dietrich Kremp, Pavel Lipavsky and Paul C Martin.


Nonequilibrium Green's Functions Approach to Inhomogeneous Systems

Nonequilibrium Green's Functions Approach to Inhomogeneous Systems

Author: Karsten Balzer

Publisher: Springer

Published: 2012-12-14

Total Pages: 135

ISBN-13: 3642350828

DOWNLOAD EBOOK

This book offers a self-contained introduction to non-equilibrium quantum particle dynamics for inhomogeneous systems, including a survey of recent breakthroughs pioneered by the authors and others. The approach is based on real-time Green’s functions.


Quantum Foundations And Open Quantum Systems: Lecture Notes Of The Advanced School

Quantum Foundations And Open Quantum Systems: Lecture Notes Of The Advanced School

Author: Theo M Nieuwenhuizen

Publisher: World Scientific

Published: 2014-10-03

Total Pages: 612

ISBN-13: 9814616745

DOWNLOAD EBOOK

The Advanced School on Quantum Foundations and Open Quantum Systems was an exceptional combination of lectures. These comprise lectures in standard physics and investigations on the foundations of quantum physics.On the one hand it included lectures on quantum information, quantum open systems, quantum transport and quantum solid state. On the other hand it included lectures on quantum measurement, models for elementary particles, sub-quantum structures and aspects on the philosophy and principles of quantum physics.The special program of this school offered a broad outlook on the current and near future fundamental research in theoretical physics.The lectures are at the level of PhD students.


The Non-Equilibrium Green's Function Method for Nanoscale Device Simulation

The Non-Equilibrium Green's Function Method for Nanoscale Device Simulation

Author: Mahdi Pourfath

Publisher: Springer

Published: 2014-07-05

Total Pages: 268

ISBN-13: 370911800X

DOWNLOAD EBOOK

For modeling the transport of carriers in nanoscale devices, a Green-function formalism is the most accurate approach. Due to the complexity of the formalism, one should have a deep understanding of the underlying principles and use smart approximations and numerical methods for solving the kinetic equations at a reasonable computational time. In this book the required concepts from quantum and statistical mechanics and numerical methods for calculating Green functions are presented. The Green function is studied in detail for systems both under equilibrium and under nonequilibrium conditions. Because the formalism enables rigorous modeling of different scattering mechanisms in terms of self-energies, but an exact evaluation of self-energies for realistic systems is not possible, their approximation and inclusion in the quantum kinetic equations of the Green functions are elaborated. All the elements of the kinetic equations, which are the device Hamiltonian, contact self-energies and scattering self-energies, are examined and efficient methods for their evaluation are explained. Finally, the application of these methods to study novel electronic devices such as nanotubes, graphene, Si-nanowires and low-dimensional thermoelectric devices and photodetectors are discussed.


Advances in Quantum Chemistry

Advances in Quantum Chemistry

Author: Erkki J. Brändas

Publisher: Academic Press

Published: 2011-07-08

Total Pages: 401

ISBN-13: 012386013X

DOWNLOAD EBOOK

Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. This series provides a one-stop resource for following progress in this interdisciplinary area. Publishes articles, invited reviews and proceedings of major international conferences and workshops Written by leading international researchers in quantum and theoretical chemistry Highlights important interdisciplinary developments


Quantum Field Theory of Non-equilibrium States

Quantum Field Theory of Non-equilibrium States

Author: Jørgen Rammer

Publisher: Cambridge University Press

Published: 2011-03-03

Total Pages: 0

ISBN-13: 9780521188005

DOWNLOAD EBOOK

Quantum field theory is the application of quantum mechanics to systems with infinitely many degrees of freedom. This 2007 textbook presents quantum field theoretical applications to systems out of equilibrium. It introduces the real-time approach to non-equilibrium statistical mechanics and the quantum field theory of non-equilibrium states in general. It offers two ways of learning how to study non-equilibrium states of many-body systems: the mathematical canonical way and an easy intuitive way using Feynman diagrams. The latter provides an easy introduction to the powerful functional methods of field theory, and the use of Feynman diagrams to study classical stochastic dynamics is considered in detail. The developed real-time technique is applied to study numerous phenomena in many-body systems. Complete with numerous exercises to aid self-study, this textbook is suitable for graduate students in statistical mechanics and condensed matter physics.


Quantum Kinetic Theory

Quantum Kinetic Theory

Author: Michael Bonitz

Publisher: Springer

Published: 2015-11-20

Total Pages: 412

ISBN-13: 3319241214

DOWNLOAD EBOOK

This book presents quantum kinetic theory in a comprehensive way. The focus is on density operator methods and on non-equilibrium Green functions. The theory allows to rigorously treat nonequilibrium dynamics in quantum many-body systems. Of particular interest are ultrafast processes in plasmas, condensed matter and trapped atoms that are stimulated by rapidly developing experiments with short pulse lasers and free electron lasers. To describe these experiments theoretically, the most powerful approach is given by non-Markovian quantum kinetic equations that are discussed in detail, including computational aspects.


Green’s Functions in Quantum Physics

Green’s Functions in Quantum Physics

Author: Eleftherios N. Economou

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 325

ISBN-13: 3662023695

DOWNLOAD EBOOK

In this edition the second and main part of the book has been considerably expanded as to cover important applications of the formalism. In Chap.5 a section was added outlining the extensive role of the tight binding (or equivalently the linear combination of atomic-like orbitals) approach to many branches of solid-state physics. Some additional informa tion (including a table of numerical values) regarding square and cubic lattice Green's functions were incorporated. In Chap.6 the difficult subjects of superconductivity and the Kondo effect are examined by employing an appealingly simple connection to the question of the existence of a bound state in a very shallow potential well. The existence of such a bound state depends entirely on the form of the un perturbed density of states near the end of the spectrum: if the density of states blows up there is always at least one bound state. If the density of states approaches zero continuously, a critical depth (and/or width) of the well must be reached in order to have a bound state. The borderline case of a finite discontinuity (which is very important to superconductivity and the Kondo effect) always produces a bound state with an exponentially small binding energy.