Program analysis utilizes static techniques for computing reliable information about the dynamic behavior of programs. Applications include compilers (for code improvement), software validation (for detecting errors) and transformations between data representation (for solving problems such as Y2K). This book is unique in providing an overview of the four major approaches to program analysis: data flow analysis, constraint-based analysis, abstract interpretation, and type and effect systems. The presentation illustrates the extensive similarities between the approaches, helping readers to choose the best one to utilize.
John Chambers turns his attention to R, the enormously successful open-source system based on the S language. His book guides the reader through programming with R, beginning with simple interactive use and progressing by gradual stages, starting with simple functions. More advanced programming techniques can be added as needed, allowing users to grow into software contributors, benefiting their careers and the community. R packages provide a powerful mechanism for contributions to be organized and communicated. This is the only advanced programming book on R, written by the author of the S language from which R evolved.
A self-contained introduction to abstract interpretation–based static analysis, an essential resource for students, developers, and users. Static program analysis, or static analysis, aims to discover semantic properties of programs without running them. It plays an important role in all phases of development, including verification of specifications and programs, the synthesis of optimized code, and the refactoring and maintenance of software applications. This book offers a self-contained introduction to static analysis, covering the basics of both theoretical foundations and practical considerations in the use of static analysis tools. By offering a quick and comprehensive introduction for nonspecialists, the book fills a notable gap in the literature, which until now has consisted largely of scientific articles on advanced topics. The text covers the mathematical foundations of static analysis, including semantics, semantic abstraction, and computation of program invariants; more advanced notions and techniques, including techniques for enhancing the cost-accuracy balance of analysis and abstractions for advanced programming features and answering a wide range of semantic questions; and techniques for implementing and using static analysis tools. It begins with background information and an intuitive and informal introduction to the main static analysis principles and techniques. It then formalizes the scientific foundations of program analysis techniques, considers practical aspects of implementation, and presents more advanced applications. The book can be used as a textbook in advanced undergraduate and graduate courses in static analysis and program verification, and as a reference for users, developers, and experts.
The First Expert Guide to Static Analysis for Software Security! Creating secure code requires more than just good intentions. Programmers need to know that their code will be safe in an almost infinite number of scenarios and configurations. Static source code analysis gives users the ability to review their work with a fine-toothed comb and uncover the kinds of errors that lead directly to security vulnerabilities. Now, there’s a complete guide to static analysis: how it works, how to integrate it into the software development processes, and how to make the most of it during security code review. Static analysis experts Brian Chess and Jacob West look at the most common types of security defects that occur today. They illustrate main points using Java and C code examples taken from real-world security incidents, showing how coding errors are exploited, how they could have been prevented, and how static analysis can rapidly uncover similar mistakes. This book is for everyone concerned with building more secure software: developers, security engineers, analysts, and testers.
Reinhard Wilhelm's career in Computer Science spans more than a third of a century. This Festschrift volume, published to honor him on his 60th Birthday on June 10, 2006, includes 15 refereed papers by leading researchers, his graduate students and research collaborators, as well as current and former colleagues, who all attended a celebratory symposium held at Schloss Dagstuhl, Germany.
This textbook grew out of notes for the ECE143 Programming for Data Analysis class that the author has been teaching at University of California, San Diego, which is a requirement for both graduate and undergraduate degrees in Machine Learning and Data Science. This book is ideal for readers with some Python programming experience. The book covers key language concepts that must be understood to program effectively, especially for data analysis applications. Certain low-level language features are discussed in detail, especially Python memory management and data structures. Using Python effectively means taking advantage of its vast ecosystem. The book discusses Python package management and how to use third-party modules as well as how to structure your own Python modules. The section on object-oriented programming explains features of the language that facilitate common programming patterns. After developing the key Python language features, the book moves on to third-party modules that are foundational for effective data analysis, starting with Numpy. The book develops key Numpy concepts and discusses internal Numpy array data structures and memory usage. Then, the author moves onto Pandas and details its many features for data processing and alignment. Because strong visualizations are important for communicating data analysis, key modules such as Matplotlib are developed in detail, along with web-based options such as Bokeh, Holoviews, Altair, and Plotly. The text is sprinkled with many tricks-of-the-trade that help avoid common pitfalls. The author explains the internal logic embodied in the Python language so that readers can get into the Python mindset and make better design choices in their codes, which is especially helpful for newcomers to both Python and data analysis. To get the most out of this book, open a Python interpreter and type along with the many code samples.
The standard view of Operations Research/Management Science (OR/MS) dichotomizes the field into deterministic and probabilistic (nondeterministic, stochastic) subfields. This division can be seen by reading the contents page of just about any OR/MS textbook. The mathematical models that help to define OR/MS are usually presented in terms of one subfield or the other. This separation comes about somewhat artificially: academic courses are conveniently subdivided with respect to prerequisites; an initial overview of OR/MS can be presented without requiring knowledge of probability and statistics; text books are conveniently divided into two related semester courses, with deterministic models coming first; academics tend to specialize in one subfield or the other; and practitioners also tend to be expert in a single subfield. But, no matter who is involved in an OR/MS modeling situation (deterministic or probabilistic - academic or practitioner), it is clear that a proper and correct treatment of any problem situation is accomplished only when the analysis cuts across this dichotomy.
This book presents a series of integrated computer programs in Fortran-90 for the dynamic analysis of structures, using the finite element method. Two dimensional continuum structures such as walls are covered along with skeletal structures such as rigid jointed frames and plane grids. Response to general dynamic loading of single degree freedom sy
This book presents a unique method for decomposing a computer program along its execution paths, for simplifying the subprograms so produced, and for recomposing a program from its subprograms. This method enables us to divide and conquer the complexity involved in understanding the computation performed by a program by decomposing it into a set of subprograms and then simplifying them to the furthest extent possible. The resulting simplified subprograms are generally more understandable than the original program as a whole. The method may also be used to simplify a piece of source code by following the path-oriented method of decomposition, simplification, and recomposition. The analysis may be carried out in such a way that the derivation of the analysis result constitutes a correctness proof. The method can be applied to any source code (or portion thereof) that prescribes the computation to be performed in terms of assignment statements, conditional statements, and loop constructs, regardless of the language or paradigm used.
Learn how to program with C++ using today’s definitive choice for your first programming language experience -- C++ PROGRAMMING: FROM PROBLEM ANALYSIS TO PROGRAM DESIGN, 8E. D.S. Malik’s time-tested, user-centered methodology incorporates a strong focus on problem-solving with full-code examples that vividly demonstrate the hows and whys of applying programming concepts and utilizing C++ to work through a problem. Thoroughly updated end-of-chapter exercises, more than 20 extensive new programming exercises, and numerous new examples drawn from Dr. Malik’s experience further strengthen the reader’s understanding of problem solving and program design in this new edition. This book highlights the most important features of C++ 14 Standard with timely discussions that ensure this edition equips you to succeed in your first programming experience and well beyond. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.