Atoms, Molecules and Photons

Atoms, Molecules and Photons

Author: Wolfgang Demtröder

Publisher: Springer Science & Business Media

Published: 2010-11-10

Total Pages: 601

ISBN-13: 3642102980

DOWNLOAD EBOOK

This introduction to Atomic and Molecular Physics explains how our present model of atoms and molecules has been developed during the last two centuries by many experimental discoveries and from the theoretical side by the introduction of quantum physics to the adequate description of micro-particles. It illustrates the wave model of particles by many examples and shows the limits of classical description. The interaction of electromagnetic radiation with atoms and molecules and its potential for spectroscopy is outlined in more detail and in particular lasers as modern spectroscopic tools are discussed more thoroughly. Many examples and problems with solutions should induce the reader to an intense active cooperation.


The Fingerprint

The Fingerprint

Author: U. S. Department Justice

Publisher: Createspace Independent Publishing Platform

Published: 2014-08-02

Total Pages: 0

ISBN-13: 9781500674151

DOWNLOAD EBOOK

The idea of The Fingerprint Sourcebook originated during a meeting in April 2002. Individuals representing the fingerprint, academic, and scientific communities met in Chicago, Illinois, for a day and a half to discuss the state of fingerprint identification with a view toward the challenges raised by Daubert issues. The meeting was a joint project between the International Association for Identification (IAI) and West Virginia University (WVU). One recommendation that came out of that meeting was a suggestion to create a sourcebook for friction ridge examiners, that is, a single source of researched information regarding the subject. This sourcebook would provide educational, training, and research information for the international scientific community.


The 71F Advantage

The 71F Advantage

Author: National Defense University Press

Publisher: NDU Press

Published: 2010-09

Total Pages: 529

ISBN-13: 1907521658

DOWNLOAD EBOOK

Includes a foreword by Major General David A. Rubenstein. From the editor: "71F, or "71 Foxtrot," is the AOC (area of concentration) code assigned by the U.S. Army to the specialty of Research Psychology. Qualifying as an Army research psychologist requires, first of all, a Ph.D. from a research (not clinical) intensive graduate psychology program. Due to their advanced education, research psychologists receive a direct commission as Army officers in the Medical Service Corps at the rank of captain. In terms of numbers, the 71F AOC is a small one, with only 25 to 30 officers serving in any given year. However, the 71F impact is much bigger than this small cadre suggests. Army research psychologists apply their extensive training and expertise in the science of psychology and social behavior toward understanding, preserving, and enhancing the health, well being, morale, and performance of Soldiers and military families. As is clear throughout the pages of this book, they do this in many ways and in many areas, but always with a scientific approach. This is the 71F advantage: applying the science of psychology to understand the human dimension, and developing programs, policies, and products to benefit the person in military operations. This book grew out of the April 2008 biennial conference of U.S. Army Research Psychologists, held in Bethesda, Maryland. This meeting was to be my last as Consultant to the Surgeon General for Research Psychology, and I thought it would be a good idea to publish proceedings, which had not been done before. As Consultant, I'd often wished for such a document to help explain to people what it is that Army Research Psychologists "do for a living." In addition to our core group of 71Fs, at the Bethesda 2008 meeting we had several brand-new members, and a number of distinguished retirees, the "grey-beards" of the 71F clan. Together with longtime 71F colleagues Ross Pastel and Mark Vaitkus, I also saw an unusual opportunity to capture some of the history of the Army Research Psychology specialty while providing a representative sample of current 71F research and activities. It seemed to us especially important to do this at a time when the operational demands on the Army and the total force were reaching unprecedented levels, with no sign of easing, and with the Army in turn relying more heavily on research psychology to inform its programs for protecting the health, well being, and performance of Soldiers and their families."


Physics and Chemistry of Finite Systems: From Clusters to Crystals

Physics and Chemistry of Finite Systems: From Clusters to Crystals

Author: Peru Jena

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 1414

ISBN-13: 9401726450

DOWNLOAD EBOOK

Recent innovations in experimental techniques such as molecular and cluster beam epitaxy, supersonic jet expansion, matrix isolation and chemical synthesis are increasingly enabling researchers to produce materials by design and with atomic dimension. These materials constrained by sire, shape, and symmetry range from clusters containing as few as two atoms to nanoscale materials consisting of thousands of atoms. They possess unique structuraI, electronic, magnetic and optical properties that depend strongly on their size and geometry. The availability of these materials raises many fundamental questions as weIl as technological possibilities. From the academic viewpoint, the most pertinent question concerns the evolution of the atomic and electronic structure of the system as it grows from micro clusters to crystals. At what stage, for example, does the cluster look as if it is a fragment of the corresponding crystal. How do electrons forming bonds in micro-clusters transform to bands in solids? How do the size dependent properties change from discrete quantum conditions, as in clusters, to boundary constrained bulk conditions, as in nanoscale materials, to bulk conditions insensitive to boundaries? How do the criteria of classification have to be changed as one goes from one size domain to another? Potential for high technological applications also seem to be endless. Clusters of otherwise non-magnetic materials exhibit magnetic behavior when constrained by size, shape, and dimension. NanoscaIe metal particles exhibit non-linear opticaI properties and increased mechanical strength. SimiIarly, materials made from nanoscale ceramic particIes possess plastic behavior.


Atomistic Simulation of Materials

Atomistic Simulation of Materials

Author: David J. Srolovitz

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 454

ISBN-13: 1468457039

DOWNLOAD EBOOK

This book contains proceedings of an international symposium on Atomistic th Simulation of Materials: Beyond Pair Potentials which was held in Chicago from the 25 th to 30 of September 1988, in conjunction with the ASM World Materials Congress. This symposium was financially supported by the Energy Conversion and Utilization Technology Program of the U. S Department of Energy and by the Air Force Office of Scientific Research. A total of fifty four talks were presented of which twenty one were invited. Atomistic simulations are now common in materials research. Such simulations are currently used to determine the structural and thermodynamic properties of crystalline solids, glasses and liquids. They are of particular importance in studies of crystal defects, interfaces and surfaces since their structures and behavior playa dominant role in most materials properties. The utility of atomistic simulations lies in their ability to provide information on those length scales where continuum theory breaks down and instead complex many body problems have to be solved to understand atomic level structures and processes.


Quantum Many-Body Physics of Ultracold Molecules in Optical Lattices

Quantum Many-Body Physics of Ultracold Molecules in Optical Lattices

Author: Michael L. Wall

Publisher: Springer

Published: 2015-04-20

Total Pages: 391

ISBN-13: 3319142526

DOWNLOAD EBOOK

This thesis investigates ultracold molecules as a resource for novel quantum many-body physics, in particular by utilizing their rich internal structure and strong, long-range dipole-dipole interactions. In addition, numerical methods based on matrix product states are analyzed in detail, and general algorithms for investigating the static and dynamic properties of essentially arbitrary one-dimensional quantum many-body systems are put forth. Finally, this thesis covers open-source implementations of matrix product state algorithms, as well as educational material designed to aid in the use of understanding such methods.