Product Design Modeling using CAD/CAE is the third part of a four-part series. It is the first book to integrate discussion of computer design tools throughout the design process. Through this book, you will: - Understand basic design principles and all digital design paradigms - Understand computer-aided design, engineering, and manufacturing (CAD/CAE/CAM) tools available for various design-related tasks - Understand how to put an integrated system together to conduct all-digital design (ADD) - Provides a comprehensive and thorough coverage of essential elements for product modeling using the virtual engineering paradigm - Covers CAD/CAE in product design, including solid modeling, mechanical assembly, parameterization, product data management, and data exchange in CAD - Case studies and tutorial examples at the end of each chapter provide hands-on practice in implementing off-the-shelf computer design tools - Provides two projects showing the use of Pro/ENGINEER and SolidWorks to implement concepts discussed in the book
e-Design: Computer-Aided Engineering Design, Revised First Edition is the first book to integrate a discussion of computer design tools throughout the design process. Through the use of this book, the reader will understand basic design principles and all-digital design paradigms, the CAD/CAE/CAM tools available for various design related tasks, how to put an integrated system together to conduct All-Digital Design (ADD), industrial practices in employing ADD, and tools for product development. - Comprehensive coverage of essential elements for understanding and practicing the e-Design paradigm in support of product design, including design method and process, and computer based tools and technology - Part I: Product Design Modeling discusses virtual mockup of the product created in the CAD environment, including not only solid modeling and assembly theories, but also the critical design parameterization that converts the product solid model into parametric representation, enabling the search for better design alternatives - Part II: Product Performance Evaluation focuses on applying CAE technologies and software tools to support evaluation of product performance, including structural analysis, fatigue and fracture, rigid body kinematics and dynamics, and failure probability prediction and reliability analysis - Part III: Product Manufacturing and Cost Estimating introduces CAM technology to support manufacturing simulations and process planning, sheet forming simulation, RP technology and computer numerical control (CNC) machining for fast product prototyping, as well as manufacturing cost estimate that can be incorporated into product cost calculations - Part IV: Design Theory and Methods discusses modern decision-making theory and the application of the theory to engineering design, introduces the mainstream design optimization methods for both single and multi-objectives problems through both batch and interactive design modes, and provides a brief discussion on sensitivity analysis, which is essential for designs using gradient-based approaches - Tutorial lessons and case studies are offered for readers to gain hands-on experiences in practicing e-Design paradigm using two suites of engineering software: Pro/ENGINEER-based, including Pro/MECHANICA Structure, Pro/ENGINEER Mechanism Design, and Pro/MFG; and SolidWorks-based, including SolidWorks Simulation, SolidWorks Motion, and CAMWorks. Available on the companion website http://booksite.elsevier.com/9780123820389
This is the second part of a four part series that covers discussion of computer design tools throughout the design process. Through this book, the reader will... - ...understand basic design principles and all digital design paradigms. - ...understand CAD/CAE/CAM tools available for various design related tasks. - ...understand how to put an integrated system together to conduct All Digital Design (ADD). - ...understand industrial practices in employing ADD and tools for product development. - Provides a comprehensive and thorough coverage of essential elements for product manufacturing and cost estimating using the computer aided engineering paradigm - Covers CAD/CAE in virtual manufacturing, tool path generation, rapid prototyping, and cost estimating; each chapter includes both analytical methods and computer-aided design methods, reflecting the use of modern computational tools in engineering design and practice - A case study and tutorial example at the end of each chapter provides hands-on practice in implementing off-the-shelf computer design tools - Provides two projects at the end of the book showing the use of Pro/ENGINEER® and SolidWorks® to implement concepts discussed in the book
The fourth book of a four-part series, Design Theory and Methods using CAD/CAE integrates discussion of modern engineering design principles, advanced design tools, and industrial design practices throughout the design process. This is the first book to integrate discussion of computer design tools throughout the design process. Through this book series, the reader will: - Understand basic design principles and all digital modern engineering design paradigms - Understand CAD/CAE/CAM tools available for various design related tasks - Understand how to put an integrated system together to conduct All Digital Design (ADD) product design using the paradigms and tools - Understand industrial practices in employing ADD virtual engineering design and tools for product development - The first book to integrate discussion of computer design tools throughout the design process - Demonstrates how to define a meaningful design problem and conduct systematic design using computer-based tools that will lead to a better, improved design - Fosters confidence and competency to compete in industry, especially in high-tech companies and design departments
This is one book of a four-part series, which aims to integrate discussion of modern engineering design principles, advanced design tools, and industrial design practices throughout the design process. Through this series, the reader will: - Understand basic design principles and modern engineering design paradigms. - Understand CAD/CAE/CAM tools available for various design related tasks. - Understand how to put an integrated system together to conduct product design using the paradigms and tools. - Understand industrial practices in employing virtual engineering design and tools for product development. - Provides a comprehensive and thorough coverage on essential elements for product performance evaluation using the virtual engineering paradigms - Covers CAD/CAE in Structural Analysis using FEM, Motion Analysis of Mechanical Systems, Fatigue and Fracture Analysis - Each chapter includes both analytical methods and computer-aided design methods, reflecting the use of modern computational tools in engineering design and practice - A case study and tutorial example at the end of each chapter provide hands-on practice in implementing off-the-shelf computer design tools - Provides two projects at the end of the book showing the use of Pro/ENGINEER® and SolidWorks ® to implement concepts discussed in the book
This updated, second edition provides readers with an expanded treatment of the FEM as well as new information on recent trends in rapid prototyping technology. The new edition features more descriptions, exercises, and questions within each chapter. In addition, more in-depth surface theory has been introduced in section four, with particular emphasis in surface theory. Promising cutting edge technologies in the area of rapid prototyping are introduced in section seven, MATLAB-based FEM analysis has been added in section eight, and development of the plan stress and plane strain stiffness equations are introduced as a new chapter. Revised and updated based on student feedback, Solid Modeling and Applications: Rapid Prototyping, CAD and CAE Theory is ideal for university students in various engineering disciplines as well as design engineers involved in product design, analysis, and validation. It equips them with an understanding of the theory and essentials and also with practical skills needed to apply this understanding in real world design and manufacturing settings.
This succinct book focuses on computer aided design (CAD), 3-D modeling, and engineering analysis and the ways they can be applied effectively in research and industrial sectors including aerospace, defense, automotive, and consumer products. These efficient tools, deployed for R&D in the laboratory and the field, perform efficiently three-dimensional modeling of finished products, render complex geometrical product designs, facilitate structural analysis and optimal product design, produce graphic and engineering drawings, and generate production documentation. Written with an eye toward green energy installations and novel manufacturing facilities, this concise volume enables scientific researchers and engineering professionals to learn design techniques, control existing and complex issues, proficiently use CAD tools, visualize technical fundamentals, and gain analytic and technical skills. This book also: · Equips practitioners and researchers to handle powerful tools for engineering design and analysis using many detailed illustrations · Emphasizes important engineering design principles in introducing readers to a range of techniques · Includes tutorials providing readers with appropriate scaffolding to accelerate their learning process · Adopts a product development, cost-consideration perspective through the book’s many examples
Innovation in Product Design gives an overview of the research fields and achievements in the development of methods and tools for product design and innovation. It presents contributions from experts in many different fields covering a variety of research topics related to product development and innovation. Product lifecycle management, knowledge management, product customization, topological optimization, product virtualization, systematic innovation, virtual humans, design and engineering, and rapid prototyping are the key research areas described in the book. It also details successful case studies developed with industrial companies. Innovation in Product Design is written for academic researchers, graduate students and professionals in product development disciplines who are interested in understanding how novel methodologies and technologies can make the product development process more efficient.
This book covers the most important topics in the field of personalized orthopedics. It starts with the 3D geometry of the bones, focusing on the problem of reverse engineering of the bones. It also shows the application of a 3D geometric model of bone for the design of personalized implants and prostheses. This book covers the application of additive technologies in personalized orthopedics as well as prediction, simulation and optimization in personalized orthopedics. Its content provides the necessary knowledge for the transition from classical to personalized orthopedics. The authors present an original method for reverse bone engineering—the Method of Anatomical Features (MAF). This method is unique as it enables the reconstruction of the original geometry and topology of the bone, even when only data on its part are available. The application of this method is shown on the examples of human long bones, mandible and hip bone reconstruction. This book contains a review of several real cases of personalized implants. It gives several examples of prostheses for the design of which a 3D model of bones was used, as well as other patient data on the basis of which personalized prostheses were designed.
In the past decade, feature-based design and manufacturing has gained some momentum in various engineering domains to represent and reuse semantic patterns with effective applicability. However, the actual scope of feature application is still very limited. Semantic Modeling and Interoperability in Product and Process Engineering provides a systematic solution for the challenging engineering informatics field aiming at the enhancement of sustainable knowledge representation, implementation and reuse in an open and yet practically manageable scale. This semantic modeling technology supports uniform, multi-facet and multi-level collaborative system engineering with heterogeneous computer-aided tools, such as CADCAM, CAE, and ERP. This presented unified feature model can be applied to product and process representation, development, implementation and management. Practical case studies and test samples are provided to illustrate applications which can be implemented by the readers in real-world scenarios. By expanding on well-known feature-based design and manufacturing approach, Semantic Modeling and Interoperability in Product and Process Engineering provides a valuable reference for researchers, practitioners and students from both academia and engineering field.