Processing and Characterization of Materials

Processing and Characterization of Materials

Author: Snehanshu Pal

Publisher: Springer Nature

Published: 2021-09-01

Total Pages: 366

ISBN-13: 981163937X

DOWNLOAD EBOOK

This book includes selected conference proceedings of Conference on Processing and Characterization of Materials (CPCM-2020). The content of the book includes processing of and characterization of materials, sustainable energy materials, defense materials, functionally graded materials, and composites which has significant impact on cutting-edge applications. The book also includes surface engineering, computational methods and materials, waste utilization, and corrosion and environmental degradation of materials. Design, research, and development studies, experimental investigations, theoretical analysis, and fabrication techniques relevant to the application of materials in various assemblies, ranging from individual components to complete structure are presented in the book. The book is useful for graduate students, researchers, and industry professionals alike.


Processing and Characterization of Materials

Processing and Characterization of Materials

Author: Archana Mallik

Publisher: Trans Tech Publications Ltd

Published: 2020-02-19

Total Pages: 562

ISBN-13: 3035735034

DOWNLOAD EBOOK

This volume is the amalgamation of papers presented at International Conference on Processing and Characterization of Materials (ICPCM 2018) which was held in National Institute of Technology Rourkela, Odisha, India during 6th – 8th December 2018 and contains results of investigations in the fields of study properties of steel, alloys and composites, properties of materials for electronics, optoelectronics and for energy, nuclear, aviation and defense applications including materials processing and metal extraction technologies, microstructural characterization, materials surface modification, deposition of thin films and special coatings, corrosion, etc.


Energetic Materials

Energetic Materials

Author: Ulrich Teipel

Publisher: John Wiley & Sons

Published: 2006-03-06

Total Pages: 643

ISBN-13: 3527604936

DOWNLOAD EBOOK

Incorporation of particular components with specialized properties allows one to tailor the end product's properties. For instance, the sensitivity, burning behavior, thermal or mechanical properties or stability of energetic materials can be affected and even controllably varied through incorporation of such ingredients. This book examines particle technologies as applied to energetic materials such as propellants and explosives, thus filling a void in the literature on this subject. Following an introduction covering general features of energetic materials, the first section of this book describes methods of manufacturing particulate energetic materials, including size reduction, crystallization, atomization, particle formation using supercritical fluids and microencapsulation, agglomeration phenomena, special considerations in mixing explosive particles and the production of nanoparticles. The second section discusses the characterization of particulate materials. Techniques and methods such as particle size analysis, morphology elucidation and the determination of chemical and thermal properties are presented. The wettability of powders and rheological behavior of suspensions and solids are also considered. Furthermore, methods of determining the performance of particular energetic materials are described. Each chapter deals with fundamentals and application possibilities of the various methods presented, with particular emphasis on issues applicable to particulate energetic materials. The book is thus equally relevant for chemists, physicists, material scientists, chemical and mechanical engineers and anyone interested or engaged in particle processing and characterization technologies.


Materials Characterization

Materials Characterization

Author: Yang Leng

Publisher: John Wiley & Sons

Published: 2009-03-04

Total Pages: 384

ISBN-13: 0470822996

DOWNLOAD EBOOK

This book covers state-of-the-art techniques commonly used in modern materials characterization. Two important aspects of characterization, materials structures and chemical analysis, are included. Widely used techniques, such as metallography (light microscopy), X-ray diffraction, transmission and scanning electron microscopy, are described. In addition, the book introduces advanced techniques, including scanning probe microscopy. The second half of the book accordingly presents techniques such as X-ray energy dispersive spectroscopy (commonly equipped in the scanning electron microscope), fluorescence X-ray spectroscopy, and popular surface analysis techniques (XPS and SIMS). Finally, vibrational spectroscopy (FTIR and Raman) and thermal analysis are also covered.


Materials Characterization Techniques

Materials Characterization Techniques

Author: Sam Zhang

Publisher: CRC Press

Published: 2008-12-22

Total Pages: 344

ISBN-13: 1420042955

DOWNLOAD EBOOK

Experts must be able to analyze and distinguish all materials, or combinations of materials, in use today-whether they be metals, ceramics, polymers, semiconductors, or composites. To understand a material's structure, how that structure determines its properties, and how that material will subsequently work in technological applications, researche


Materials Characterization Using Nondestructive Evaluation (NDE) Methods

Materials Characterization Using Nondestructive Evaluation (NDE) Methods

Author: Gerhard Huebschen

Publisher: Woodhead Publishing

Published: 2016-03-23

Total Pages: 322

ISBN-13: 008100057X

DOWNLOAD EBOOK

Materials Characterization Using Nondestructive Evaluation (NDE) Methods discusses NDT methods and how they are highly desirable for both long-term monitoring and short-term assessment of materials, providing crucial early warning that the fatigue life of a material has elapsed, thus helping to prevent service failures. Materials Characterization Using Nondestructive Evaluation (NDE) Methods gives an overview of established and new NDT techniques for the characterization of materials, with a focus on materials used in the automotive, aerospace, power plants, and infrastructure construction industries. Each chapter focuses on a different NDT technique and indicates the potential of the method by selected examples of applications. Methods covered include scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques. The authors review both the determination of microstructure properties, including phase content and grain size, and the determination of mechanical properties, such as hardness, toughness, yield strength, texture, and residual stress. Gives an overview of established and new NDT techniques, including scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques Reviews the determination of microstructural and mechanical properties Focuses on materials used in the automotive, aerospace, power plants, and infrastructure construction industries Serves as a highly desirable resource for both long-term monitoring and short-term assessment of materials


Microstructural Characterization of Materials

Microstructural Characterization of Materials

Author: David Brandon

Publisher: John Wiley & Sons

Published: 2013-03-21

Total Pages: 517

ISBN-13: 1118681487

DOWNLOAD EBOOK

Microstructural characterization is usually achieved by allowing some form of probe to interact with a carefully prepared specimen. The most commonly used probes are visible light, X-ray radiation, a high-energy electron beam, or a sharp, flexible needle. These four types of probe form the basis for optical microscopy, X-ray diffraction, electron microscopy, and scanning probe microscopy. Microstructural Characterization of Materials, 2nd Edition is an introduction to the expertise involved in assessing the microstructure of engineering materials and to the experimental methods used for this purpose. Similar to the first edition, this 2nd edition explores the methodology of materials characterization under the three headings of crystal structure, microstructural morphology, and microanalysis. The principal methods of characterization, including diffraction analysis, optical microscopy, electron microscopy, and chemical microanalytical techniques are treated both qualitatively and quantitatively. An additional chapter has been added to the new edition to cover surface probe microscopy, and there are new sections on digital image recording and analysis, orientation imaging microscopy, focused ion-beam instruments, atom-probe microscopy, and 3-D image reconstruction. As well as being fully updated, this second edition also includes revised and expanded examples and exercises, with a solutions manual available at http://develop.wiley.co.uk/microstructural2e/ Microstructural Characterization of Materials, 2nd Edition will appeal to senior undergraduate and graduate students of material science, materials engineering, and materials chemistry, as well as to qualified engineers and more advanced researchers, who will find the book a useful and comprehensive general reference source.


Introduction to Nanocomposite Materials

Introduction to Nanocomposite Materials

Author: Thomas E. Twardowski

Publisher: DEStech Publications, Inc

Published: 2007

Total Pages: 605

ISBN-13: 1932078541

DOWNLOAD EBOOK

The field of nanocomposites is growing by leaps and bounds. a few of the recent commericial applications include sport utility vehicles, furniture, and appliances. Fields interested in reaping the material property advantages of nanocomposites range from agriculture to space science. Many materials, natural and synthetic, capitalize on the behavior of nanoscopic size scales, sometimes by design and sometimes not. The goal of this textbook is to provide a solid foundation for understanding, and beginning to answer, the questions posed by nanocomposites.