Process Modeling in Powder Metallurgy & Particulate Materials
Author:
Publisher:
Published: 2002
Total Pages: 244
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author:
Publisher:
Published: 2002
Total Pages: 244
ISBN-13:
DOWNLOAD EBOOKAuthor: Mark F. Horstemeyer
Publisher: John Wiley & Sons
Published: 2018-03-01
Total Pages: 654
ISBN-13: 1119018382
DOWNLOAD EBOOKFocuses entirely on demystifying the field and subject of ICME and provides step-by-step guidance on its industrial application via case studies This highly-anticipated follow-up to Mark F. Horstemeyer’s pedagogical book on Integrated Computational Materials Engineering (ICME) concepts includes engineering practice case studies related to the analysis, design, and use of structural metal alloys. A welcome supplement to the first book—which includes the theory and methods required for teaching the subject in the classroom—Integrated Computational Materials Engineering (ICME) For Metals: Concepts and Case Studies focuses on engineering applications that have occurred in industries demonstrating the ICME methodologies, and aims to catalyze industrial diffusion of ICME technologies throughout the world. The recent confluence of smaller desktop computers with enhanced computing power coupled with the emergence of physically-based material models has created the clear trend for modeling and simulation in product design, which helped create a need to integrate more knowledge into materials processing and product performance. Integrated Computational Materials Engineering (ICME) For Metals: Case Studies educates those seeking that knowledge with chapters covering: Body Centered Cubic Materials; Designing An Interatomic Potential For Fe-C Alloys; Phase-Field Crystal Modeling; Simulating Dislocation Plasticity in BCC Metals by Integrating Fundamental Concepts with Macroscale Models; Steel Powder Metal Modeling; Hexagonal Close Packed Materials; Multiscale Modeling of Pure Nickel; Predicting Constitutive Equations for Materials Design; and more. Presents case studies that connect modeling and simulation for different materials' processing methods for metal alloys Demonstrates several practical engineering problems to encourage industry to employ ICME ideas Introduces a new simulation-based design paradigm Provides web access to microstructure-sensitive models and experimental database Integrated Computational Materials Engineering (ICME) For Metals: Case Studies is a must-have book for researchers and industry professionals aiming to comprehend and employ ICME in the design and development of new materials.
Author: Antonios Zavaliangos
Publisher: IOS Press
Published: 2001
Total Pages: 298
ISBN-13: 9781586030940
DOWNLOAD EBOOKThis book contains 25 papers from the NATO Advanced Research Workshop on Recent Advances of Computer Modeling of Powder Metallurgy Processes. The papers address cold compaction, sintering, high-temperature compaction, processing modeling, and processes and materials. The integration of mechanical and physical aspects of P/M processes is emphasized. Contributors include researchers from Europe, the United States, Korea, and Japan. Author index only. c. Book News Inc
Author: Joanna R. Groza
Publisher: CRC Press
Published: 2007-03-28
Total Pages: 840
ISBN-13: 1420004824
DOWNLOAD EBOOKThe field of materials science and engineering is rapidly evolving into a science of its own. While traditional literature in this area often concentrates primarily on property and structure, the Materials Processing Handbook provides a much needed examination from the materials processing perspective. This unique focus reflects the changing comple
Author: Isaac Chang
Publisher: Elsevier
Published: 2013-08-31
Total Pages: 624
ISBN-13: 085709890X
DOWNLOAD EBOOKPowder metallurgy (PM) is a popular metal forming technology used to produce dense and precision components. Different powder and component forming routes can be used to create an end product with specific properties for a particular application or industry. Advances in powder metallurgy explores a range of materials and techniques used for powder metallurgy and the use of this technology across a variety of application areas.Part one discusses the forming and shaping of metal powders and includes chapters on atomisation techniques, electrolysis and plasma synthesis of metallic nanopowders. Part two goes on to highlight specific materials and their properties including advanced powdered steel alloys, porous metals and titanium alloys. Part three reviews the manufacture and densification of PM components and explores joining techniques, process optimisation in powder component manufacturing and non-destructive evaluation of PM parts. Finally, part four focusses on the applications of PM in the automotive industry and the use of PM in the production of cutting tools and biomaterials.Advances in powder metallurgy is a standard reference for structural engineers and component manufacturers in the metal forming industry, professionals working in industries that use PM components and academics with a research interest in the field. - Discusses the forming and shaping of metal powders and includes chapters on atomisation techniques - Highlights specific materials and their properties including advanced powdered steel alloys, porous metals and titanium alloys - Reviews the manufacture and densification of PM components and explores joining techniques
Author: Randall M. German
Publisher:
Published: 2005
Total Pages: 544
ISBN-13:
DOWNLOAD EBOOKAuthor: Peter R. Brewin
Publisher: Springer Science & Business Media
Published: 2007-09-26
Total Pages: 341
ISBN-13: 1846280990
DOWNLOAD EBOOKManufacture of components from powders frequently requires a compaction step. Modelling of Powder Die Compaction presents a number of case studies that have been developed to test compaction models. It will be bought by researchers involved in developing models of powder compaction as well as by those working in industry, either using powder compaction to make products or using products made by powder compaction.
Author: Ma Qian
Publisher: Butterworth-Heinemann
Published: 2015-02-10
Total Pages: 649
ISBN-13: 0128009101
DOWNLOAD EBOOKTitanium Powder Metallurgy contains the most comprehensive and authoritative information for, and understanding of, all key issues of titanium powder metallurgy (Ti PM). It summarizes the past, reviews the present and discusses the future of the science and technology of Ti PM while providing the world titanium community with a unique and comprehensive book covering all important aspects of titanium powder metallurgy, including powder production, powder processing, green shape formation, consolidation, property evaluation, current industrial applications and future developments. It documents the fundamental understanding and technological developments achieved since 1937 and demonstrates why powder metallurgy now offers a cost-effective approach to the near net or net shape fabrication of titanium, titanium alloys and titanium metal matrix composites for a wide variety of industrial applications. - Provides a comprehensive and in-depth treatment of the science, technology and industrial practice of titanium powder metallurgy - Each chapter is delivered by the most knowledgeable expert on the topic, half from industry and half from academia, including several pioneers in the field, representing our current knowledge base of Ti PM. - Includes a critical review of the current key fundamental and technical issues of Ti PM. - Fills a critical knowledge gap in powder metal science and engineering and in the manufacture of titanium metal and alloys
Author: Kuang-Oscar Yu
Publisher: CRC Press
Published: 2001-10-16
Total Pages: 724
ISBN-13: 9780824788810
DOWNLOAD EBOOKThis text seeks to provide a comprehensive technical foundation and practical examples for casting process modelling technology. It highlights fundamental theory for solidification and useful applications for industrial production. It also details shape and ingot castings, semi-solid metalworking, and spray forming.
Author: Dierk Raabe
Publisher: John Wiley & Sons
Published: 2006-03-06
Total Pages: 885
ISBN-13: 3527604219
DOWNLOAD EBOOKThis book fills a gap by presenting our current knowledge and understanding of continuum-based concepts behind computational methods used for microstructure and process simulation of engineering materials above the atomic scale. The volume provides an excellent overview on the different methods, comparing the different methods in terms of their respective particular weaknesses and advantages. This trains readers to identify appropriate approaches to the new challenges that emerge every day in this exciting domain. Divided into three main parts, the first is a basic overview covering fundamental key methods in the field of continuum scale materials simulation. The second one then goes on to look at applications of these methods to the prediction of microstructures, dealing with explicit simulation examples, while the third part discusses example applications in the field of process simulation. By presenting a spectrum of different computational approaches to materials, the book aims to initiate the development of corresponding virtual laboratories in the industry in which these methods are exploited. As such, it addresses graduates and undergraduates, lecturers, materials scientists and engineers, physicists, biologists, chemists, mathematicians, and mechanical engineers.