Process Intensification

Process Intensification

Author: David Reay

Publisher: Butterworth-Heinemann

Published: 2013-06-05

Total Pages: 624

ISBN-13: 0080983057

DOWNLOAD EBOOK

Process Intensification: Engineering for Efficiency, Sustainability and Flexibility is the first book to provide a practical working guide to understanding process intensification (PI) and developing successful PI solutions and applications in chemical process, civil, environmental, energy, pharmaceutical, biological, and biochemical systems. Process intensification is a chemical and process design approach that leads to substantially smaller, cleaner, safer, and more energy efficient process technology. It improves process flexibility, product quality, speed to market and inherent safety, with a reduced environmental footprint. This book represents a valuable resource for engineers working with leading-edge process technologies, and those involved research and development of chemical, process, environmental, pharmaceutical, and bioscience systems. - No other reference covers both the technology and application of PI, addressing fundamentals, industry applications, and including a development and implementation guide - Covers hot and high growth topics, including emission prevention, sustainable design, and pinch analysis - World-class authors: Colin Ramshaw pioneered PI at ICI and is widely credited as the father of the technology


Process Systems Engineering for Biofuels Development

Process Systems Engineering for Biofuels Development

Author: Adrian Bonilla-Petriciolet

Publisher: John Wiley & Sons

Published: 2020-10-05

Total Pages: 381

ISBN-13: 1119580277

DOWNLOAD EBOOK

A comprehensive overview of current developments and applications in biofuels production Process Systems Engineering for Biofuels Development brings together the latest and most cutting-edge research on the production of biofuels. As the first book specifically devoted to process systems engineering for the production of biofuels, Process Systems Engineering for Biofuels Development covers theoretical, computational and experimental issues in biofuels process engineering. Written for researchers and postgraduate students working on biomass conversion and sustainable process design, as well as industrial practitioners and engineers involved in process design, modeling and optimization, this book is an indispensable guide to the newest developments in areas including: Enzyme-catalyzed biodiesel production Process analysis of biodiesel production (including kinetic modeling, simulation and optimization) The use of ultrasonification in biodiesel production Thermochemical processes for biomass transformation to biofuels Production of alternative biofuels In addition to the comprehensive overview of the subject of biofuels found in the Introduction of the book, the authors of various chapters have provided extensive discussions of the production and separation of biofuels via novel applications and techniques.


Process Intensification Technologies for Biodiesel Production

Process Intensification Technologies for Biodiesel Production

Author: Anton Alexandru Kiss

Publisher: Springer Science & Business Media

Published: 2014-03-15

Total Pages: 109

ISBN-13: 3319035541

DOWNLOAD EBOOK

This book is among the first to address the novel process intensification technologies for biodiesel production, in particular the integrated reactive separations. It provides a comprehensive overview illustrated with many industrially relevant examples of novel reactive separation processes used in the production of biodiesel (e.g. fatty acid alkyl esters): reactive distillation, reactive absorption, reactive extraction, membrane reactors, and centrifugal contact separators. Readers will also learn about the working principles, design and control of integrated processes, while also getting a relevant and modern overview of the process intensification opportunities for biodiesel synthesis. Biodiesel is a biodegradable and renewable fuel that currently enjoys much attention. In spite of the recent advances, the existing biodiesel processes still suffer from problems associated with the use of homogeneous catalysts (e.g. salt waste streams) and the key limitations imposed by the chemical reaction equilibrium, thus leading to severe economic and environmental penalties. The integration of reaction and separation into one operating unit overcomes equilibrium limitations and provides key benefits such as low capital investment and operating costs. Many of these processes can be further enhanced by heat-integration and powered by heterogeneous catalysts, to eliminate all conventional catalyst related operations, using the raw materials efficiently and the reaction volume, while offering high conversion and selectivity, and significant energy savings. The targeted audience of this book includes both academia (students and researchers) and industry (project leaders, technology managers, researchers, biodiesel producers, and equipment suppliers).


Process Intensification

Process Intensification

Author: Fernando Israel Gómez-Castro

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2019-10-21

Total Pages: 346

ISBN-13: 3110596121

DOWNLOAD EBOOK

Intensified processes have found widespread application in the chemical and petrochemical industries. The use of intensified systems allows for a reduction of operating costs and supports the “greening” of chemical processes. However, the design of intensified equipment requires special methodologies. This book describes the fundamentals and applications of these design methods, making it a valuable resource for use in both industry and academia.


Process Intensification

Process Intensification

Author: David Reay

Publisher: Butterworth-Heinemann

Published: 2011-04-08

Total Pages: 471

ISBN-13: 0080558089

DOWNLOAD EBOOK

Process intensification (PI) is a chemical and process design approach that leads to substantially smaller, cleaner, safer and more energy-efficient process technology. A hot topic across the chemical and process industries, this is the first book to provide a practical working guide to understanding and developing successful PI solutions that deliver savings and efficiencies. It will appeal to engineers working with leading-edge process technologies and those involved research and development of chemical, process, environmental, pharmaceutical, and bioscience systems.* Shows chemical and process engineers how to apply process intensification to their system, process or operation* A hard-working reference and user guide to the technology AND application of PI, covering fundamentals, industry applications, supplemented by a development and implementation guide* Leading author team, including Professor Colin Ramshaw, developer of the HiGee high-gravity distillation process at ICI, widely credited as the instigator of PI principles


Process Intensification Technologies for Green Chemistry

Process Intensification Technologies for Green Chemistry

Author: Kamelia Boodhoo

Publisher: John Wiley & Sons

Published: 2013-01-03

Total Pages: 400

ISBN-13: 1118498534

DOWNLOAD EBOOK

The successful implementation of greener chemical processes relies not only on the development of more efficient catalysts for synthetic chemistry but also, and as importantly, on the development of reactor and separation technologies which can deliver enhanced processing performance in a safe, cost-effective and energy efficient manner. Process intensification has emerged as a promising field which can effectively tackle the challenges of significant process enhancement, whilst also offering the potential to diminish the environmental impact presented by the chemical industry. Following an introduction to process intensification and the principles of green chemistry, this book presents a number of intensified technologies which have been researched and developed, including case studies to illustrate their application to green chemical processes. Topics covered include: • Intensified reactor technologies: spinning disc reactors, microreactors, monolith reactors, oscillatory flow reactors, cavitational reactors • Combined reactor/separator systems: membrane reactors, reactive distillation, reactive extraction, reactive absorption • Membrane separations for green chemistry • Industry relevance of process intensification, including economics and environmental impact, opportunities for energy saving, and practical considerations for industrial implementation. Process Intensification for Green Chemistry is a valuable resource for practising engineers and chemists alike who are interested in applying intensified reactor and/or separator systems in a range of industries to achieve green chemistry principles.


Energy from Microalgae

Energy from Microalgae

Author: Eduardo Jacob-Lopes

Publisher: Springer

Published: 2018-02-19

Total Pages: 313

ISBN-13: 3319690930

DOWNLOAD EBOOK

This book presents an authoritative and comprehensive overview of the production and use of microalgal biomass and bioproducts for energy generation. It also offers extensive information on engineering approaches to energy production, such as process integration and process intensification in harnessing energy from microalgae. Issues related to the environment, food, chemicals and energy supply pose serious threats to nations’ success and stability. The challenge to provide for a rapidly growing global population has made it imperative to find new technological routes to increase the production of consumables while also bearing in mind the biosphere’s ability to regenerate resources. Microbial biomass is a bioresource that provides effective solutions to these challenges. Divided into eight parts, the book explores microalgal production systems, life cycle assessment and the bio-economy of biofuels from microalgae, process integration and process intensification applied to microalgal biofuels production. In addition, it discusses the main fuel products obtained from microalgae, summarizing a range of useful energy products derived from algae-based systems, and outlines future developments. Given the book’s breadth of coverage and extensive bibliography, it offers an essential resource for researchers and industry professionals working in renewable energy.


Nano- and Biocatalysts for Biodiesel Production

Nano- and Biocatalysts for Biodiesel Production

Author: Avinash P. Ingle

Publisher: John Wiley & Sons

Published: 2021-06-21

Total Pages: 371

ISBN-13: 1119730007

DOWNLOAD EBOOK

Reviews recent advances in catalytic biodiesel synthesis, highlighting various nanocatalysts and nano(bio)catalysts developed for effective biodiesel production Nano- and Biocatalysts for Biodiesel Production delivers an essential reference for academic and industrial researchers in biomass valorization and biofuel industries. The book covers both nanocatalysts and biocatalysts, bridging the gap between homogenous and heterogenous catalysis. Readers will learn about the techno-economical and environmental aspects of biodiesel production using different feedstocks and catalysts. They will also discover how nano(bio)catalysts can be used as effective alternatives to conventional catalysts in biodiesel production due to their unique properties, including reusability, high activation energy and rate of reaction, easy recovery, and recyclability. Readers will benefit from the inclusion of: Introductions to CaO nanocatalysts, zeolite nanocatalysts, titanium dioxide-based nanocatalysts and zinc-based in biodiesel production An exploration of carbon-based heterogeneous nanocatalysts for the production of biodiesel Practical discussions of bio-based nano catalysts for biodiesel production and the application of nanoporous materials as heterogeneous catalysts for biodiesel production An analysis of the techno-economical considerations of biodiesel production using different feedstocks Nano- and Biocatalysts for Biodiesel Production focuses on recent advances in the field and offers a complete and informative guide for academic researchers and industrial scientists working in the fields of biofuels and bioenergy, catalysis, biotechnology, bioengineering, nanotechnology, and materials science.


Bioreactors

Bioreactors

Author: Lakhveer Singh

Publisher: Elsevier

Published: 2020-04-08

Total Pages: 336

ISBN-13: 0128212640

DOWNLOAD EBOOK

Bioreactors: Sustainable Design and Industrial Applications in Mitigation of GHG Emissions presents and compares the foundational concepts, state-of-the-art design and fabrication of bioreactors. Solidly based on theoretical fundamentals, the book examines various aspects of the commercially available bioreactors, such as construction and fabrication, design, modeling and simulation, development, operation, maintenance, management and target applications for biofuels production and bio-waste management. Emerging issues in commercial feasibility are explored, constraints and pathways for upscaling, and techno-economic assessment are also covered. This book provides researchers and engineers in the biofuels and waste management sectors a clear, at-a-glance understanding of the actual potential of different advanced bioreactors for their requirements. It is a must-have reference for better-informed decisions when selecting the appropriate technology models for sustainable systems development and commercialization.


Liquid Biofuels

Liquid Biofuels

Author: Krushna Prasad Shadangi

Publisher: John Wiley & Sons

Published: 2021-06-29

Total Pages: 754

ISBN-13: 1119791987

DOWNLOAD EBOOK

Compiled by a well-known expert in the field, Liquid Biofuels provides a profound knowledge to researchers about biofuel technologies, selection of raw materials, conversion of various biomass to biofuel pathways, selection of suitable methods of conversion, design of equipment, selection of operating parameters, determination of chemical kinetics, reaction mechanism, preparation of bio-catalyst: its application in bio-fuel industry and characterization techniques, use of nanotechnology in the production of biofuels from the root level to its application and many other exclusive topics for conducting research in this area. Written with the objective of offering both theoretical concepts and practical applications of those concepts, Liquid Biofuels can be both a first-time learning experience for the student facing these issues in a classroom and a valuable reference work for the veteran engineer or scientist. The description of the detailed characterization methodologies along with the precautions required during analysis are extremely important, as are the detailed description about the ultrasound assisted biodiesel production techniques, aviation biofuels and its characterization techniques, advance in algal biofuel techniques, pre-treatment of biomass for biofuel production, preparation and characterization of bio-catalyst, and various methods of optimization. The book offers a comparative study between the various liquid biofuels obtained from different methods of production and its engine performance and emission analysis so that one can get the utmost idea to find the better biofuel as an alternative fuel. Since the book covers almost all the field of liquid biofuel production techniques, it will provide advanced knowledge to the researcher for practical applications across the energy sector. A valuable reference for engineers, scientists, chemists, and students, this volume is applicable to many different fields, across many different industries, at all levels. It is a must-have for any library.