Proceedings

Proceedings

Author: E. Durant McArthur

Publisher:

Published: 1999

Total Pages: 316

ISBN-13:

DOWNLOAD EBOOK

The 51 papers in this proceedings include an introductory keynote paper on ecotones and hybrid zones and a final paper describing the mid-symposium field trip as well as collections of papers on ecotones and hybrid zones (15), population biology (6), community ecology (19), and community rehabilitation and restoration (9). All of the papers focus on wildland shrub ecosystems; 14 of the papers deal with one aspect or another of sagebrush (subgenus Tridentatae of Artemisia) ecosystems. The field trip consisted of descriptions of biology, ecology, and geology of a big sagebrush (Artemisia tridentata) hybrid zone between two subspecies (A. tridentata ssp. tridentata and A. t. ssp. vaseyana) in Salt Creek Canyon, Wasatch Mountains, Uinta National Forest, Utah, and the ecotonal or clinal vegetation gradient of the Great Basin Experimental Range, Manti-La Sal National Forest, Utah, together with its historical significance. The papers were presented at the 10th Wildland Shrub Symposium: Shrubland Ecotones, at Snow College, Ephraim, UT, August 12-14, 1998.


Handbook of Thermal Analysis and Calorimetry

Handbook of Thermal Analysis and Calorimetry

Author: Stephen Z.D. Cheng

Publisher: Elsevier

Published: 2002-12-09

Total Pages: 859

ISBN-13: 008052740X

DOWNLOAD EBOOK

As a new and exciting field of interdisciplinary macromolecular science and engineering, polymeric materials will have a profound presence in 21st century chemical, pharmaceutical, biomedical, manufacturing, infrastructure, electronic, optical and information technologies. The origin of this field derived from an area of polymer science and engineering encompassing plastic technologies. The field is rapidly expanding to incorporate new interdisciplinary research areas such as biomaterials, macromolecular biology, novel macromolecular structures, environmental macromolecular science and engineering, innovative and nano-fabrications of products, and is translating discoveries into technologies.·Unique in combining scientific concepts with technological aspects·Provides a comprehensive and broad coverage of thermodynamic and thermal behaviours of various polymeric materials as well as methodologies of thermal analysis and calorimetry·Contributions are from both pioneering scientists and the new generation of researchers


Thermal Analysis of Polymeric Materials

Thermal Analysis of Polymeric Materials

Author: Bernhard Wunderlich

Publisher: Springer Science & Business Media

Published: 2005-04-04

Total Pages: 918

ISBN-13: 9783540236290

DOWNLOAD EBOOK

Table of Contents Table of Contents 1 Atoms, small, and large molecules 2 Basics of thermal analysis 3 Dynamics of chemical and phase changes 4 Thermal analysis tools 5 Structure and properties of materials 6 Single component materials 7 Multiple component materials App. A.1 Table of thermal properties of linear macromolecules and related small molecules - the ATHAS data bank App. A.2 Radiation scattering App. A.3 Derivation of the Rayleigh ratio App. A.4 Neural network predictions App. A.5 Legendre transformations, Maxwell relations, linking of entropy and probability, and derivation of (dS/dT) App. A.6 Boltzmann distribution, harmonic vibration, complex numbers, and normal modes App. A.7 Summary of the basic kinetics of chemical reactions App. A.8 The ITS 1990 and the Krypton-86 length standard App. A.9 Development of classical DTA to DSC App. A.10 Examples of DTA and DSC under extreme conditions App. A.11 Description of an online correction of the heat-flow rate App. A.12 Derivation of the heat-flow equations App. A.13 Description of sawtooth-modulation response App. A.14 An introduction to group theory, definitions of configurations and conformations, and a summary of rational and irrational numbers App. A.15 Summary of birefringence and polarizing microscopy App. A.16 Summary of X-ray diffraction and interference effects App. A.17 Optical analog of electron double diffraction to produce Moire patterns.


Analytical Techniques in the Pharmaceutical Sciences

Analytical Techniques in the Pharmaceutical Sciences

Author: Anette Müllertz

Publisher: Springer

Published: 2016-08-30

Total Pages: 829

ISBN-13: 1493940295

DOWNLOAD EBOOK

The aim of this book is to present a range of analytical methods that can be used in formulation design and development and focus on how these systems can be applied to understand formulation components and the dosage form these build. To effectively design and exploit drug delivery systems, the underlying characteristic of a dosage form must be understood--from the characteristics of the individual formulation components, to how they act and interact within the formulation, and finally, to how this formulation responds in different biological environments. To achieve this, there is a wide range of analytical techniques that can be adopted to understand and elucidate the mechanics of drug delivery and drug formulation. Such methods include e.g. spectroscopic analysis, diffractometric analysis, thermal investigations, surface analytical techniques, particle size analysis, rheological techniques, methods to characterize drug stability and release, and biological analysis in appropriate cell and animal models. Whilst each of these methods can encompass a full research area in their own right, formulation scientists must be able to effectively apply these methods to the delivery system they are considering. The information in this book is designed to support researchers in their ability to fully characterize and analyze a range of delivery systems, using an appropriate selection of analytical techniques. Due to its consideration of regulatory approval, this book will also be suitable for industrial researchers both at early stage up to pre-clinical research.


New Serial Titles

New Serial Titles

Author:

Publisher:

Published: 1990

Total Pages: 1860

ISBN-13:

DOWNLOAD EBOOK

A union list of serials commencing publication after Dec. 31, 1949.


Thermal Physics and Thermal Analysis

Thermal Physics and Thermal Analysis

Author: Jaroslav Šesták

Publisher: Springer

Published: 2017-03-24

Total Pages: 585

ISBN-13: 331945899X

DOWNLOAD EBOOK

Features twenty-five chapter contributions from an international array of distinguished academics based in Asia, Eastern and Western Europe, Russia, and the USA. This multi-author contributed volume provides an up-to-date and authoritative overview of cutting-edge themes involving the thermal analysis, applied solid-state physics, micro- and nano-crystallinity of selected solids and their macro- and microscopic thermal properties. Distinctive chapters featured in the book include, among others, calorimetry time scales from days to microseconds, glass transition phenomena, kinetics of non-isothermal processes, thermal inertia and temperature gradients, thermodynamics of nanomaterials, self-organization, significance of temperature and entropy. Advanced undergraduates, postgraduates and researchers working in the field of thermal analysis, thermophysical measurements and calorimetry will find this contributed volume invaluable. This is the third volume of the triptych volumes on thermal behaviour of materials; the previous two receiving thousand of downloads guaranteeing their worldwide impact.


Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications

Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications

Author: Angelo Basile

Publisher: Elsevier

Published: 2011-08-24

Total Pages: 849

ISBN-13: 0857093797

DOWNLOAD EBOOK

Membrane materials allow for the selective separation of gas and vapour and for ion transport. Materials research and development continues to drive improvements in the design, manufacture and integration of membrane technologies as critical components in both sustainable energy and clean industry applications. Membrane utilisation offers process simplification and intensification in industry, providing low-cost, and efficient and reliable operation, and contributing towards emissions reductions and energy security. Advanced membrane science and technology for sustainable energy and environmental applications presents a comprehensive review of membrane utilisation and integration within energy and environmental industries.Part one introduces the topic of membrane science and engineering, from the fundamentals of membrane processes and separation to membrane characterization and economic analysis. Part two focuses on membrane utilisation for carbon dioxide (CO2) capture in coal and gas power plants, including pre- and post-combustion and oxygen transport technologies. Part three reviews membranes for the petrochemical industry, with chapters covering hydrocarbon fuel, natural gas and synthesis gas processing, as well as advanced biofuels production. Part four covers membranes for alternative energy applications and energy storage, such as membrane technology for redox and lithium batteries, fuel cells and hydrogen production. Finally, part five discusses membranes utilisation in industrial and environmental applications, including microfiltration, ultrafiltration, and forward osmosis, as well as water, wastewater and nuclear power applications.With its distinguished editors and team of expert contributors, Advanced membrane science and technology for sustainable energy and environmental applications is an essential reference for membrane and materials engineers and manufacturers, as well as researchers and academics interested in this field. - Presents a comprehensive review of membrane science and technology, focusing on developments and applications in sustainable energy and clean-industry - Discusses the fundamentals of membrane processes and separation and membrane characterization and economic analysis - Addresses the key issues of membrane utilisation in coal and gas power plants and the petrochemical industry, the use of membranes for alternative energy applications and membrane utilisation in industrial and environmental applications