This text covers the subjects of computer architecture and parallel and high-performance computing. Topics include: free-space optical interconnect systems; design and analysis of optical interconnects; interconnect system analysis; and fiber-based interconnects.
This book constitutes the refereed proceedings of the IFIP International Conference on Network and Parallel Computing, NPC 2004, held in Wuhan, China in October 2004. Also included are selected refereed papers from two workshops associated with NPC 2004. The 46 revised full papers and 23 revised short papers presented together with abstracts of 5 invited presentations were selected from a total of 338 submissions. The 25 workshop revised papers included also were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on grid computing, peer-to-peer computing, Web techniques, cluster computing, parallel programming environments, network architecture, network security, network storage, intelligent sensor networks, and multimedia modeling and security in next generation network information systems.
Optical media are now widely used in the telecommunication networks, and the evolution of optical and optoelectronic technologies tends to show that their wide range of techniques could be successfully introduced in shorter-distance interconnection systems. This book bridges the existing gap between research in optical interconnects and research in high-performance computing and communication systems, of which parallel processing is just an example. It also provides a more comprehensive understanding of the advantages and limitations of optics as applied to high-speed communications. Audience: The book will be a vital resource for researchers and graduate students of optical interconnects, computer architectures and high-performance computing and communication systems who wish to understand the trends in the newest technologies, models and communication issues in the field.
This book presents an updated selection of the most representative contributions to the 2nd and 3rd IEEE Workshops on Signal Propagation on Interconnects (SPI) which were held in Travemtinde (Baltic See Side), Germany, May 13-15, 1998, and in Titisee-Neustadt (Black Forest), Germany, May 19-21, 1999. This publication addresses the need of developers and researchers in the field of VLSI chip and package design. It offers a survey of current problems regarding the influence of interconnect effects on the electrical performance of electronic circuits and suggests innovative solutions. In this sense the present book represents a continua tion and a supplement to the first book "Signal Propagation on Interconnects", Kluwer Academic Publishers, 1998. The papers in this book cover a wide area of research directions: Beneath the des cription of general trends they deal with the solution of signal integrity problems, the modeling of interconnects, parameter extraction using calculations and measurements and last but not least actual problems in the field of optical interconnects.
Advances in optical technologies have made it possible to implement optical interconnections in future massively parallel processing systems. Photons are non-charged particles, and do not naturally interact. Consequently, there are many desirable characteristics of optical interconnects, e.g. high speed (speed of light), increased fanout, high bandwidth, high reliability, longer interconnection lengths, low power requirements, and immunity to EMI with reduced crosstalk. Optics can utilize free-space interconnects as well as guided wave technology, neither of which has the problems of VLSI technology mentioned above. Optical interconnections can be built at various levels, providing chip-to-chip, module-to-module, board-to-board, and node-to-node communications. Massively parallel processing using optical interconnections poses new challenges; new system configurations need to be designed, scheduling and data communication schemes based on new resource metrics need to be investigated, algorithms for a wide variety of applications need to be developed under the novel computation models that optical interconnections permit, and so on. Parallel Computing Using Optical Interconnections is a collection of survey articles written by leading and active scientists in the area of parallel computing using optical interconnections. This is the first book which provides current and comprehensive coverage of the field, reflects the state of the art from high-level architecture design and algorithmic points of view, and points out directions for further research and development.