Conference proceedings covering the latest technology developments for fossil fuel power plants, including nickel-based alloys for advanced ultrasupercritical power plants, materials for turbines, oxidation and corrosion, welding and weld performance, new alloys concepts, and creep and general topics.
This book is a collection of the marketing/technical/regulatory sessions of the Composites Institute's International Composites EXPO '97 held at Nashville, Tennessee on January 27-29, 1997.
This handbook provides an indispensable overview of all essential aspects of industrial-scale inkjet printing. Inkjet printing, as a scalable deposition technique, has grown in popularity due to its being additive, digital, and contact-free. Given these advantages, the technology can now be used in stable and mature industrial-scale applications. As the mechanisms for inkjet printing have improved, so too have the versatility and applicability of this machinery within industry. The handbook's coverage includes inks, printhead technology, substrates, metrology, software, as well as machine integration and pre- and post-processing approaches. This information is complemented by an overview of printing strategies and application development and covers technological advances in packaging, security printing, printed electronics, robotics, 3D printing, and bioprinting. Important topics like standardisation, regulatory requirements, ecological aspects, and patents. Readers will find: * The most comprehensive work on the topic with over 75 chapters and more than 1,500 pages relating to inkjet printing technology * The inkjet-printing expertise of corporate development engineers and academic researchers in one manual * A hands-on approach utilizing case studies, success stories, and practical hints that allow the reader direct, first-hand experience with the power of inkjet printing technology. The ideal resource for material scientists, engineering scientists in industry, electronic engineers, and surface and solid-state chemists,"Inkjet Printing in Industry" is an all-in-one tool for modern professionals and researchers alike. This handbook provides an indispensable overview of all essential aspects of industrial-scale inkjet printing. Inkjet printing, as a scalable deposition technique, has grown in popularity due to its being additive, digital, and contact-free. Given these advantages, the technology can now be used in stable and mature industrial-scale applications. As the mechanisms for inkjet printing have improved, so too have the versatility and applicability of this machinery within industry. The handbook's coverage includes inks, printhead technology, substrates, metrology, software, as well as machine integration and pre- and post-processing approaches. This information is complemented by an overview of printing strategies and application development and covers technological advances in packaging, security printing, printed electronics, robotics, 3D printing, and bioprinting. Important topics like standardisation, regulatory requirements, ecological aspects, and patents. Readers will find: * The most comprehensive work on the topic with over 75 chapters and more than 1,500 pages relating to inkjet printing technology * The inkjet-printing expertise of corporate development engineers and academic researchers in one manual * A hands-on approach utilizing case studies, success stories, and practical hints that allow the reader direct, first-hand experience with the power of inkjet printing technology. The ideal resource for material scientists, engineering scientists in industry, electronic engineers, and surface and solid-state chemists,"Inkjet Printing in Industry" is an all-in-one tool for modern professionals and researchers alike.
Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants provides researchers in academia and industry with an essential overview of the stronger high-temperature materials required for key process components, such as membrane wall tubes, high-pressure steam piping and headers, superheater tubes, forged rotors, cast components, and bolting and blading for steam turbines in USC power plants. Advanced materials for future advanced ultra-supercritical power plants, such as superalloys, new martensitic and austenitic steels, are also addressed. Chapters on international research directions complete the volume. The transition from conventional subcritical to supercritical thermal power plants greatly increased power generation efficiency. Now the introductions of the ultra-supercritical (USC) and, in the near future, advanced ultra-supercritical (A-USC) designs are further efforts to reduce fossil fuel consumption in power plants and the associated carbon dioxide emissions. The higher operating temperatures and pressures found in these new plant types, however, necessitate the use of advanced materials. - Provides researchers in academia and industry with an authoritative and systematic overview of the stronger high-temperature materials required for both ultra-supercritical and advanced ultra-supercritical power plants - Covers materials for critical components in ultra-supercritical power plants, such as boilers, rotors, and turbine blades - Addresses advanced materials for future advanced ultra-supercritical power plants, such as superalloys, new martensitic and austenitic steels - Includes chapters on technologies for welding technologies
This book contains papers presented at the NATO Advanced Research Workshop titled "Application of Gun and Rocket Propellants in Commercial Explosives". (SST.ARW975981) The workshop was organized in collaboration with codirector Dr. Bronislav V. Matseevich (KNIIM) and held in Krasnoarmeisk, Moscow Region, Russia, October 18-21, 1999. About 70 participants from 11 different countries took part in the meeting (Russia, Belarus, Czech Republic, Germany, Belgium, China, USA, Spain, Israel, Ukraine and the Netherlands). The workshop was principally the continuation of a previous NATO workshop on Conversion Concepts for Commercial Application and Disposal Technologies of Energetic Systems" held at Moscow, Russia, May 17-19, 1994 in the specific area of the reuse of gun and rocket propellants as ingredients in commercial explosives. Oldrich Machacek Vll ACKNOWLEDGMENTS I would like to thank Dr. B.V. Matseevich, Director of the Krasnoarmeisk Scientific Research Institute of Mechanization ("KNIIM") for his extensive involvement as co-director in organizing the Advanced Research Workshop in Krasnoarmeisk, Russia. Special thanks goes to Dr. V.P. Glinskij, Dr. LV. Vasiljeva and A.I. Fedonina from KNIIM and Dr. B. Vetlicky for invaluable assistance in preparation and the smooth operation ofthe workshop.