FPGA '17: The 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays Feb 22, 2017-Feb 24, 2017 Monterey, USA. You can view more information about this proceeding and all of ACM�s other published conference proceedings from the ACM Digital Library: http://www.acm.org/dl.
Machine learning is a potential solution to resolve bottleneck issues in VLSI via optimizing tasks in the design process. This book aims to provide the latest machine-learning–based methods, algorithms, architectures, and frameworks designed for VLSI design. The focus is on digital, analog, and mixed-signal design techniques, device modeling, physical design, hardware implementation, testability, reconfigurable design, synthesis and verification, and related areas. Chapters include case studies as well as novel research ideas in the given field. Overall, the book provides practical implementations of VLSI design, IC design, and hardware realization using machine learning techniques. Features: Provides the details of state-of-the-art machine learning methods used in VLSI design Discusses hardware implementation and device modeling pertaining to machine learning algorithms Explores machine learning for various VLSI architectures and reconfigurable computing Illustrates the latest techniques for device size and feature optimization Highlights the latest case studies and reviews of the methods used for hardware implementation This book is aimed at researchers, professionals, and graduate students in VLSI, machine learning, electrical and electronic engineering, computer engineering, and hardware systems.
This book constitutes the proceedings of the 32nd International Conference on Architecture of Computing Systems, ARCS 2019, held in Copenhagen, Denmark, in May 2019. The 24 full papers presented in this volume were carefully reviewed and selected from 40 submissions. ARCS has always been a conference attracting leading-edge research outcomes in Computer Architecture and Operating Systems, including a wide spectrum of topics ranging from embedded and real-time systems all the way to large-scale and parallel systems. The selected papers are organized in the following topical sections: Dependable systems; real-time systems; special applications; architecture; memory hierarchy; FPGA; energy awareness; NoC/SoC. The chapter 'MEMPower: Data-Aware GPU Memory Power Model' is open access under a CC BY 4.0 license at link.springer.com.
The seventh Future Technologies Conference 2022 was organized in a hybrid mode. It received a total of 511 submissions from learned scholars, academicians, engineers, scientists and students across many countries. The papers included the wide arena of studies like Computing, Artificial Intelligence, Machine Vision, Ambient Intelligence and Security and their jaw- breaking application to the real world. After a double-blind peer review process 177 submissions have been selected to be included in these proceedings. One of the prominent contributions of this conference is the confluence of distinguished researchers who not only enthralled us by their priceless studies but also paved way for future area of research. The papers provide amicable solutions to many vexing problems across diverse fields. They also are a window to the future world which is completely governed by technology and its multiple applications. We hope that the readers find this volume interesting and inspiring and render their enthusiastic support towards it.
In the research area of computer science, practitioners are constantly searching for faster platforms with pertinent results. With analytics that span environmental development to computer hardware emulation, problem-solving algorithms are in high demand. Field-Programmable Gate Array (FPGA) is a promising computing platform that can be significantly faster for some applications and can be applied to a variety of fields. FPGA Algorithms and Applications for the Internet of Things provides emerging research exploring the theoretical and practical aspects of computable algorithms and applications within robotics and electronics development. Featuring coverage on a broad range of topics such as neuroscience, bioinformatics, and artificial intelligence, this book is ideally designed for computer science specialists, researchers, professors, and students seeking current research on cognitive analytics and advanced computing.
Deep learning algorithms have brought a revolution to the computer vision community by introducing non-traditional and efficient solutions to several image-related problems that had long remained unsolved or partially addressed. This book presents a collection of eleven chapters where each individual chapter explains the deep learning principles of a specific topic, introduces reviews of up-to-date techniques, and presents research findings to the computer vision community. The book covers a broad scope of topics in deep learning concepts and applications such as accelerating the convolutional neural network inference on field-programmable gate arrays, fire detection in surveillance applications, face recognition, action and activity recognition, semantic segmentation for autonomous driving, aerial imagery registration, robot vision, tumor detection, and skin lesion segmentation as well as skin melanoma classification. The content of this book has been organized such that each chapter can be read independently from the others. The book is a valuable companion for researchers, for postgraduate and possibly senior undergraduate students who are taking an advanced course in related topics, and for those who are interested in deep learning with applications in computer vision, image processing, and pattern recognition.
This book highlights a broad range of modern information technology tools, techniques, investigations and open challenges, mainly with applications in systems research and computational physics. Divided into three major sections, it begins by presenting specialized calculation methods in the framework of data analysis and intelligent computing. In turn, the second section focuses on application aspects, mainly for systems research, while the final section investigates how various tasks in the basic disciplines—mathematics and physics—can be tackled with the aid of contemporary IT methods. The book gathers selected presentations from the 3rd Conference on Information Technology, Systems Research and Computational Physics (ITSRCP'18), which took place on 2–5 July 2018 in Krakow, Poland. The intended readership includes interdisciplinary scientists and practitioners pursuing research at the interfaces of information technology, systems research, and computational physics.
Target object detection and identification are among the primary uses for a remote sensing system. This is crucial in several fields, including environmental and urban monitoring, hazard and disaster management, and defense and military. In recent years, these analyses have used the tremendous amount of data acquired by sensors mounted on satellite, airborne, and unmanned aerial vehicle (UAV) platforms. This book promotes papers exploiting different remote sensing data for target object detection and identification, such as synthetic aperture radar (SAR) imaging and multispectral and hyperspectral imaging. Several cutting-edge contributions, which provide examples of how to select of a technology or another depending on the specific application, will be detailed.
Artificial Intelligence and Machine Learning for Predictive and Analytical Rendering in Edge Computing focuses on the role of AI and machine learning as it impacts and works alongside Edge Computing. Sections cover the growing number of devices and applications in diversified domains of industry, including gaming, speech recognition, medical diagnostics, robotics and computer vision and how they are being driven by Big Data, Artificial Intelligence, Machine Learning and distributed computing, may it be Cloud Computing or the evolving Fog and Edge Computing paradigms. Challenges covered include remote storage and computing, bandwidth overload due to transportation of data from End nodes to Cloud leading in latency issues, security issues in transporting sensitive medical and financial information across larger gaps in points of data generation and computing, as well as design features of Edge nodes to store and run AI/ML algorithms for effective rendering. - Provides a reference handbook on the evolution of distributed systems, including Cloud, Fog and Edge Computing - Integrates the various Artificial Intelligence and Machine Learning techniques for effective predictions at Edge rather than Cloud or remote Data Centers - Provides insight into the features and constraints in Edge Computing and storage, including hardware constraints and the technological/architectural developments that shall overcome those constraints
This book constitutes the refereed proceedings of the 6th Annual Smart City 360° Summit. Due to COVID-19 pandemic the conference was held virtually. The volume combines selected papers of seven conferences, namely AISCOVID 2020 - International Conference on AI-assisted Solutions for COVID-19 and Biomedical Applications in Smart-Cities; EdgeIoT 2020 - International Conference on Intelligent Edge Processing in the IoT Era; IC4S 2020 - International Conference on Cognitive Computing and Cyber Physical Systems; CiCom 2020 - International Conference on Computational Intelligence and Communications; S-Cube 2020 - International Conference on Sensor Systems and Software; SmartGov 2020 - International Conference on Smart Governance for Sustainable Smart Cities; and finnally, the Urb-IOT 2020 -International Conference on IoT in Urban Space.