A current picture of progress and research in group theory is provided by five leading group theorists Bachmuth, Baumslag, Neumann, Roseblade and Tits.
Selected papers presented at the international conference on group theory held at St. Andrews in 1989 are combined in two volumes. The themes of the conference were combinatorial and computational group theory.
These two volumes contain selected papers presented at the international conference on group theory held at St. Andrews in 1989. The themes of the conference were combinatorial and computational group theory; leading group theorists, including J.A. Green, N.D. Gupta, O.H. Kegel and J.G. Thompson, gave courses whose content is reproduced here. Also included are refereed papers presented at the meeting.
This book contains selected papers from the international conference 'Groups - St Andrews 1981', which was held at the University of St Andrews in July/August 1981. Its contents reflect the main topics of the conference: combinatorial group theory; infinite groups; general groups, finite or infinite; computational group theory. Four courses, each providing a five-lecture survey, given by J. Neubuser (Aachen), D. J. S. Robinson (Illinois), S. J. Tobin (Galway) and J. Wiengold (Cardiff), have been expanded into articles, forming the first part of the book. The second part consists of surveys and research articles written by other conference participants. More than two-thirds of the book is composed of survey articles providing a remarkably clear and up-to-date picture of those areas of group theory. The articles which comprise this book, together with their extensive bibliographies, will prove an invaluable tool to researchers in group theory, and, in addition, their detailed expositions make them very suitable for relevant postgraduate courses.
Representing the wealth and diversity of group theory for experienced researchers as well as new postgraduates, this two-volume book contains selected papers from the international conference which was held at University College Galway in August 1993.
This first volume of the two-volume book contains selected papers from the international conference 'Groups St Andrews 2001 in Oxford' which was held at the University of Oxford in August 2001. Five main lecture courses were given at the conference, and articles based on their lectures form a substantial part of the Proceedings. This volume contains the contributions from Marston Conder (Auckland), Persi Diaconis (Stanford) and Marcus Du Sautoy (Cambridge). The series of Proceedings of Groups St Andrews conferences have provided snapshots of the state of research in group theory throughout the past twenty years. As with earlier volumes, these refereed volumes also contain accessible surveys of contemporary research fronts, as well as a diverse collection of short research articles. They form a valuable reference for researchers, especially graduate students, working in group theory.
This two-volume book contains selected papers from the international conference 'Groups 1993 Galway / St Andrews' which was held at University College Galway in August 1993. The wealth and diversity of group theory is represented in these two volumes. As with the Proceedings of the earlier 'Groups-St Andrews' conferences it is hoped that the articles in these Proceedings will, with their many references, prove valuable both to experienced researchers and also to new postgraduates interested in group theory.
State of the art treatment of a subject which has applications in mathematical physics, biology and finance. Includes discussion of applications to control theory. There are numerous notes and references that point to further reading. Coverage of some essential background material helps to make the book self contained.
In this book the authors present their research into the foundations of the theory of Polish groups and the associated orbit equivalence relations. The particular case of locally compact groups has long been studied in many areas of mathematics. Non-locally compact Polish groups occur naturally as groups of symmetries in such areas as logic (especially model theory), ergodic theory, group representations, and operator algebras. Some of the topics covered here are: topological realizations of Borel measurable actions; universal actions; applications to invariant measures; actions of the infinite symmetric group in connection with model theory (logic actions); dichotomies for orbit spaces (including Silver, Glimm-Effros type dichotomies and the topological Vaught conjecture); descriptive complexity of orbit equivalence relations; definable cardinality of orbit spaces.