As a complement to The Beginnings of Electron Microscopy, Advances in Imaging and Electron Physics is pleased to present Volume 96, The Growth of Electron Microscopy. This comprehensive collection of articles surveys the accomplishments of various national groups that comprise the International Federation of Societies of Electron Microscopy (IFSEM).
Advances in Imaging and Electron Physics merges two long-running serials—Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. - Contributions from leading authorities - Informs and updates on all the latest developments in the field
The contents of this book stems from three different objectives. First, it is an introduction to the basic principles and techniques of Landau's theory, which is intended for teaching purposes. A second purpose of the book provides the practical methods for applying Landau's theory to complex systems. The last objective of the book is to incorporate the developments which have arisen in the last fifteen years from the extensive application of the theory to a variety of physical systems.
This updated and revised edition of a classic work provides a summary of methods for numerical computation of high resolution conventional and scanning transmission electron microscope images. At the limits of resolution, image artifacts due to the instrument and the specimen interaction can complicate image interpretation. Image calculations can help the user to interpret and understand high resolution information in recorded electron micrographs. The book contains expanded sections on aberration correction, including a detailed discussion of higher order (multipole) aberrations and their effect on high resolution imaging, new imaging modes such as ABF (annular bright field), and the latest developments in parallel processing using GPUs (graphic processing units), as well as updated references. Beginning and experienced users at the advanced undergraduate or graduate level will find the book to be a unique and essential guide to the theory and methods of computation in electron microscopy.