Probing Two-Dimensional Quantum Fluids with Cavity Optomechanics

Probing Two-Dimensional Quantum Fluids with Cavity Optomechanics

Author: Yauhen Sachkou

Publisher: Springer Nature

Published: 2020-07-17

Total Pages: 161

ISBN-13: 3030527662

DOWNLOAD EBOOK

Superfluid helium is a quantum liquid that exhibits a range of counter-intuitive phenomena such as frictionless flow. Quantized vortices are a particularly important feature of superfluid helium, and all superfluids, characterized by a circulation that can only take prescribed integer values. However, the strong interactions between atoms in superfluid helium prohibit quantitative theory of vortex behaviour. Experiments have similarly not been able to observe coherent vortex dynamics. This thesis resolves this challenge, bringing microphotonic techniques to bear on two-dimensional superfluid helium, observing coherent vortex dynamics for the first time, and achieving this on a silicon chip. This represents a major scientific contribution, as it opens the door not only to providing a better understanding of this esoteric quantum state of matter, but also to building new quantum technologies based upon it, and to understanding the dynamics of astrophysical superfluids such as those thought to exist in the core of neutron stars.


Transport and Turbulence in Quasi-Uniform and Versatile Bose-Einstein Condensates

Transport and Turbulence in Quasi-Uniform and Versatile Bose-Einstein Condensates

Author: Gauthier Guillaume

Publisher: Springer Nature

Published: 2020-09-26

Total Pages: 177

ISBN-13: 3030549674

DOWNLOAD EBOOK

Advancing the experimental study of superfluids relies on increasingly sophisticated techniques. We develop and demonstrate the loading of Bose-Einstein condensates (BECs) into nearly arbitrary trapping potentials, with a resolution improved by a factor of seven when compared to reported systems. These advanced control techniques have since been adopted by several cold atoms labs around the world. How this BEC system was used to study 2D superfluid dynamics is described. In particular, negative temperature vortex states in a two-dimensional quantum fluid were observed. These states were first predicted by Lars Onsager 70 years ago and have significance to 2D turbulence in quantum and classical fluids, long-range interacting systems, and defect dynamics in high-energy physics. These experiments have established dilute-gas BECs as the prototypical system for the experimental study of point vortices and their nonequilibrium dynamics. We also developed a new approach to superfluid circuitry based on classical acoustic circuits, demonstrating its conceptual and quantitative superiority over previous lumped-element models. This has established foundational principles of superfluid circuitry that will impact the design of future transport experiments and new generation quantum devices, such as atomtronics circuits and superfluid sensors.


Cavity Optomechanics in the Quantum Regime

Cavity Optomechanics in the Quantum Regime

Author: Thierry Claude Marc Botter

Publisher:

Published: 2013

Total Pages: 128

ISBN-13:

DOWNLOAD EBOOK

An exciting scientific goal, common to many fields of research, is the development of ever-larger physical systems operating in the quantum regime. Relevant to this dissertation is the objective of preparing and observing a mechanical object in its motional quantum ground state. In order to sense the object's zero-point motion, the probe itself must have quantum-limited sensitivity. Cavity optomechanics, the interactions between light and a mechanical object inside an optical cavity, provides an elegant means to achieve the quantum regime. In this dissertation, I provide context to the successful cavity-based optical detection of the quantum-ground-state motion of atoms-based mechanical elements; mechanical elements, consisting of the collective center-of-mass (CM) motion of ultracold atomic ensembles and prepared inside a high-finesse Fabry-P'erot cavity, were dispersively probed with an average intracavity photon number as small as 0.1. I first show that cavity optomechanics emerges from the theory of cavity quantum electrodynamics when one takes into account the CM motion of one or many atoms within the cavity, and provide a simple theoretical framework to model optomechanical interactions. I then outline details regarding the apparatus and the experimental methods employed, highlighting certain fundamental aspects of optical detection along the way. Finally, I describe background information, both theoretical and experimental, to two published results on quantum cavity optomechanics that form the backbone of this dissertation. The first publication shows the observation of zero-point collective motion of several thousand atoms and quantum-limited measurement backaction on that observed motion. The second publication demonstrates that an array of near-ground-state collective atomic oscillators can be simultaneously prepared and probed, and that the motional state of one oscillator can be selectively addressed while preserving the near-zero-point motion of neighboring oscillators.


Physics of Quantum Fluids

Physics of Quantum Fluids

Author: Alberto Bramati

Publisher: Springer Science & Business Media

Published: 2013-07-11

Total Pages: 417

ISBN-13: 3642375693

DOWNLOAD EBOOK

The study of quantum fluids, stimulated by the discovery of superfluidity in liquid helium, has experienced renewed interest after the observation of Bose-Einstein condensation (BEC) in ultra-cold atomic gases and the observation a new type of quantum fluid with specific characteristics derived from its intrinsic out-of-equilibrium nature. The main objective of this book is to take a snapshot of the state-of-the-art of this fast moving field with a special emphasis on the hot topics and new trends. Bringing together the most active specialists of the two areas (atomic and polaritonic quantum fluids), we expect that this book will facilitate the exchange and the collaboration between these two communities working on subjects with very strong analogies.


Sketches of Physics

Sketches of Physics

Author: Roberta Citro

Publisher: Springer Nature

Published: 2023-10-16

Total Pages: 284

ISBN-13: 3031324692

DOWNLOAD EBOOK

This book is a journey through the wonders of physics, the special thousandth volume of the renowned Lecture Notes in Physics book series. From quantum physics to solar physics, this volume showcases the beauty of physics in various fields. Written by series editors and colleagues, these essays are accessible to non-specialists and graduate-level students alike, making for an intriguing read for anyone interested in learning about physics beyond their own field of study. Explore the historical development of the series with two insightful forewords. List of essays: A New Era of Quantum Materials Mastery and Quantum Simulators In and Out of Equilibrium Evaluation and Utility of Wilsonian Naturalness The Geometric Phase: Consequences in Classical and Quantum Physics The Coming Decades of Quantum Simulation Insights into Complex Functions Exploring the Hottest Atmosphere with the Parker Solar Probe A Primer on the Riemann Hypothesis


Quantum Transport in Mesoscopic Systems

Quantum Transport in Mesoscopic Systems

Author: David Sánchez

Publisher: MDPI

Published: 2021-01-06

Total Pages: 426

ISBN-13: 3039433660

DOWNLOAD EBOOK

Mesoscopic physics deals with systems larger than single atoms but small enough to retain their quantum properties. The possibility to create and manipulate conductors of the nanometer scale has given birth to a set of phenomena that have revolutionized physics: quantum Hall effects, persistent currents, weak localization, Coulomb blockade, etc. This Special Issue tackles the latest developments in the field. Contributors discuss time-dependent transport, quantum pumping, nanoscale heat engines and motors, molecular junctions, electron–electron correlations in confined systems, quantum thermo-electrics and current fluctuations. The works included herein represent an up-to-date account of exciting research with a broad impact in both fundamental and applied topics.


Design, Realization and Stabilization of Quantum Optical Injection System for Ultra-sensitive Quantum Opotomechanics Experiments

Design, Realization and Stabilization of Quantum Optical Injection System for Ultra-sensitive Quantum Opotomechanics Experiments

Author: Alexandros Tavernarakis

Publisher:

Published: 2012

Total Pages: 163

ISBN-13:

DOWNLOAD EBOOK

Cavity Optomechanics, that is the study of the interaction between an optical cavity mode and a mechanical degree of freedom, has known impressive evolution over the past decade, to become a new field at the union of condensed matter physics and optics. One of the major goals of this discipline is to test and study quantum mechanics using macroscopic systems. Among the most fundamental problems the community aims to address is the question of the quantum limits in position measurement. Quantum mechanics predicts that any measurement comes along with a backaction, which perturbs the state of the measured system. Moreover, it is expected to be conjugated with the quantum noise of the measurement apparatus (called measurement noise) used to probe the system. The optimal sensitivity is reached whenever both the measurement and the backaction noise are identical, a situation which can be assimilated to the acceptance of Heisenberg's inequality for the measurement apparatus. In cavity optomechanics, the mode of an optical cavity is used as a measurement apparatus of the position of a mechanical resonator which is expected to be responsible for the back-action imprecision. However, this so-called radiation pressure quantum back-action has never been observed to date, while it remains a decisive step towards understanding quantum measurement processes.We describe in this manuscript the study of radiation pressure effects in cavity optomechanics. We introduce the optomechanical system we have developed, which consists in a cm-scale ultra high Q (~ 106 ) plano-convex mechanical resonator incorporated into a ultra-high finesse (~ 300 000) Fabry-Pérot cavity. We present two important results we obtained with this system. First, we were able to report the first direct observation of radiation pressure in real-time, based on establishing pump-probe correlations. We were also able to demonstrate for the first time nonlinear backaction effects related to substantial improvement of position measurement sensitivity. We explain why demonstrating quantum back-action requires ultra-high stability of the optical mode. We present important changes made to the previous experimental setup, notably on the laser source, on the detection and the stabilization of the experiment. We then describe a new optomechanical detection technique providing an independent measurement of the cavity detuning. Finally, we present a proof-of-principle experiment allowing to extract quantum optomechanical correlations at room temperature.