This book deals with two main topics. The first is a theory that aims to unify the many interpretations of probability presented in the literature. The second uses this comprehensive theory of probability to answer the questions of quantum mechanics that have long been debated. The entire book proposes original solutions that several experimental cases substantiate.
Christopher G. Timpson provides the first full-length philosophical treatment of quantum information theory and the questions it raises for our understanding of the quantum world. He argues for an ontologically deflationary account of the nature of quantum information, which is grounded in a revisionary analysis of the concepts of information.
This book addresses some of the problems of interpreting Schrödinger's mechanics — the most complete and explicit theory falling under the umbrella of “quantum theory”. The outlook is materialist (“realist”) and stresses the development of Schrödinger's mechanics from classical theories and its close connections with (particularly) the Hamilton-Jacobi theory. Emphasis is placed on the concepts and use of the modern objective (measure-theoretic) probability theory. The work is free from any mention of the bearing of Schrödinger's mechanics on God, his alleged mind or, indeed, minds at all. The author has taken the naïve view that this mechanics is about the structure and dynamics of atomic and sub-atomic systems since he has been unable to trace any references to minds, consciousness or measurements in the foundations of the theory.
This title gives students a good understanding of how quantum mechanics describes the material world. The text stresses the continuity between the quantum world and the classical world, which is merely an approximation to the quantum world.
Endophysics, Time, Quantum and the Subjective is the first systematic cross- and trans-disciplinary appraisal of the endophysical paradigm and its possible role in our understanding of Nature. Focusing on three of the most pressing issues of contemporary science, the interpretation of quantum theory, the nature of time, and the problem of consciousness, it provides the reader with some forefront research, concepts and ideas in these areas, such as incessant Big Bang, geometrizing of “mental space-times,” and a contextual view of quantum mechanics and/or a view of the Universe as a self-evolving quantum automaton. Although primarily aimed at academics this engaging volume can be read by anyone interested in modern physics, philosophy, psychology and cognitive sciences.
This book provides the first consideration of quantum principles in legal decision making. It shows how quantum probability theory can be applied to psychology and law to deepen our understanding of psychological and legal issues, suggesting a paradigm shift in the study of these areas. Written as an introduction to quantum probability theory for non-physicists, the book offers an accessible summary of how psychology can be applied to quantum phenomena for human decision making. It introduces psychologists and lawyers to fresh conceptual frameworks, including classical probability theory, classical statistics, data mining and quantum theory. Wojciechowski shows how quantum theory and concepts can be transferred to psychological research models, and can help to resolve previously unexplained psychological phenomena, influence scientific views, undermine traditional foundations of the legal system and result in the development of new research directions. Studies conducted by the author are used to show how problems facing legal decision making can be addressed in a completely new light with the application of quantum probability theory. This cutting-edge and innovative book will be of great interest to graduate students and researchers in the fields of forensic psychology and legal decision making, as well as legal professionals and legal scholars.
The book is divided into two parts. The first part looks at the modeling of statistical systems before moving on to an analysis of these systems. This second edition contains new material on: estimators based on a probability distribution for the parameters; identification of stochastic models from observations; and statistical tests and classification methods.
This textbook is mainly for physics students at the advanced undergraduate and beginning graduate levels, especially those with a theoretical inclination. Its chief purpose is to give a systematic introduction to the main ingredients of the fundamentals of quantum theory, with special emphasis on those aspects of group theory (spacetime and permutational symmetries and group representations) and differential geometry (geometrical phases, topological quantum numbers, and Chern-Simons Theory) that are relevant in modern developments of the subject. It will provide students with an overview of key elements of the theory, as well as a solid preparation in calculational techniques.