This is a book of elementary probability theory that includes a chapter on algorithmic randomness. It rigorously presents definitions and theorems in computation theory, and explains the meanings of the theorems by comparing them with mechanisms of the computer, which is very effective in the current computer age.Random number topics have not been treated by any books on probability theory, only some books on computation theory. However, the notion of random number is necessary for understanding the essential relation between probability and randomness. The field of probability has changed very much, thus this book will make and leave a big impact even to expert probabilists.Readers from applied sciences will benefit from this book because it presents a very proper foundation of the Monte Carlo method with practical solutions, keeping the technical level no higher than 1st year university calculus.
NATIONAL BESTSELLER • From the classroom to the courtroom and from financial markets to supermarkets, an intriguing and illuminating look at how randomness, chance, and probability affect our daily lives that will intrigue, awe, and inspire. “Mlodinow writes in a breezy style, interspersing probabilistic mind-benders with portraits of theorists.... The result is a readable crash course in randomness.” —The New York Times Book Review With the born storyteller's command of narrative and imaginative approach, Leonard Mlodinow vividly demonstrates how our lives are profoundly informed by chance and randomness and how everything from wine ratings and corporate success to school grades and political polls are less reliable than we believe. By showing us the true nature of chance and revealing the psychological illusions that cause us to misjudge the world around us, Mlodinow gives us the tools we need to make more informed decisions. From the classroom to the courtroom and from financial markets to supermarkets, Mlodinow's intriguing and illuminating look at how randomness, chance, and probability affect our daily lives will intrigue, awe, and inspire.
The book covers basic concepts such as random experiments, probability axioms, conditional probability, and counting methods, single and multiple random variables (discrete, continuous, and mixed), as well as moment-generating functions, characteristic functions, random vectors, and inequalities; limit theorems and convergence; introduction to Bayesian and classical statistics; random processes including processing of random signals, Poisson processes, discrete-time and continuous-time Markov chains, and Brownian motion; simulation using MATLAB and R.
Unlike traditional introductory math/stat textbooks, Probability and Statistics: The Science of Uncertainty brings a modern flavor based on incorporating the computer to the course and an integrated approach to inference. From the start the book integrates simulations into its theoretical coverage, and emphasizes the use of computer-powered computation throughout.* Math and science majors with just one year of calculus can use this text and experience a refreshing blend of applications and theory that goes beyond merely mastering the technicalities. They'll get a thorough grounding in probability theory, and go beyond that to the theory of statistical inference and its applications. An integrated approach to inference is presented that includes the frequency approach as well as Bayesian methodology. Bayesian inference is developed as a logical extension of likelihood methods. A separate chapter is devoted to the important topic of model checking and this is applied in the context of the standard applied statistical techniques. Examples of data analyses using real-world data are presented throughout the text. A final chapter introduces a number of the most important stochastic process models using elementary methods. *Note: An appendix in the book contains Minitab code for more involved computations. The code can be used by students as templates for their own calculations. If a software package like Minitab is used with the course then no programming is required by the students.
Random Number Generators, Principles and Practices has been written for programmers, hardware engineers, and sophisticated hobbyists interested in understanding random numbers generators and gaining the tools necessary to work with random number generators with confidence and knowledge. Using an approach that employs clear diagrams and running code examples rather than excessive mathematics, random number related topics such as entropy estimation, entropy extraction, entropy sources, PRNGs, randomness testing, distribution generation, and many others are exposed and demystified. If you have ever Wondered how to test if data is really random Needed to measure the randomness of data in real time as it is generated Wondered how to get randomness into your programs Wondered whether or not a random number generator is trustworthy Wanted to be able to choose between random number generator solutions Needed to turn uniform random data into a different distribution Needed to ensure the random numbers from your computer will work for your cryptographic application Wanted to combine more than one random number generator to increase reliability or security Wanted to get random numbers in a floating point format Needed to verify that a random number generator meets the requirements of a published standard like SP800-90 or AIS 31 Needed to choose between an LCG, PCG or XorShift algorithm Then this might be the book for you.
An intuitive, yet precise introduction to probability theory, stochastic processes, statistical inference, and probabilistic models used in science, engineering, economics, and related fields. This is the currently used textbook for an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students, and for a leading online class on the subject. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains a number of more advanced topics, including transforms, sums of random variables, a fairly detailed introduction to Bernoulli, Poisson, and Markov processes, Bayesian inference, and an introduction to classical statistics. The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis is explained intuitively in the main text, and then developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems.
Now available in a fully revised and updated second edition, this well established textbook provides a straightforward introduction to the theory of probability. The presentation is entertaining without any sacrifice of rigour; important notions are covered with the clarity that the subject demands. Topics covered include conditional probability, independence, discrete and continuous random variables, basic combinatorics, generating functions and limit theorems, and an introduction to Markov chains. The text is accessible to undergraduate students and provides numerous worked examples and exercises to help build the important skills necessary for problem solving.
Computability and complexity theory are two central areas of research in theoretical computer science. This book provides a systematic, technical development of "algorithmic randomness" and complexity for scientists from diverse fields.
This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.
Fooled by Randomness is a standalone book in Nassim Nicholas Taleb’s landmark Incerto series, an investigation of opacity, luck, uncertainty, probability, human error, risk, and decision-making in a world we don’t understand. The other books in the series are The Black Swan, Antifragile, Skin in the Game, and The Bed of Procrustes. Fooled by Randomness is the word-of-mouth sensation that will change the way you think about business and the world. Nassim Nicholas Taleb–veteran trader, renowned risk expert, polymathic scholar, erudite raconteur, and New York Times bestselling author of The Black Swan–has written a modern classic that turns on its head what we believe about luck and skill. This book is about luck–or more precisely, about how we perceive and deal with luck in life and business. Set against the backdrop of the most conspicuous forum in which luck is mistaken for skill–the world of trading–Fooled by Randomness provides captivating insight into one of the least understood factors in all our lives. Writing in an entertaining narrative style, the author tackles major intellectual issues related to the underestimation of the influence of happenstance on our lives. The book is populated with an array of characters, some of whom have grasped, in their own way, the significance of chance: the baseball legend Yogi Berra; the philosopher of knowledge Karl Popper; the ancient world’s wisest man, Solon; the modern financier George Soros; and the Greek voyager Odysseus. We also meet the fictional Nero, who seems to understand the role of randomness in his professional life but falls victim to his own superstitious foolishness. However, the most recognizable character of all remains unnamed–the lucky fool who happens to be in the right place at the right time–he embodies the “survival of the least fit.” Such individuals attract devoted followers who believe in their guru’s insights and methods. But no one can replicate what is obtained by chance. Are we capable of distinguishing the fortunate charlatan from the genuine visionary? Must we always try to uncover nonexistent messages in random events? It may be impossible to guard ourselves against the vagaries of the goddess Fortuna, but after reading Fooled by Randomness we can be a little better prepared. Named by Fortune One of the Smartest Books of All Time A Financial Times Best Business Book of the Year