Primal-dual Interior-Point Methods

Primal-dual Interior-Point Methods

Author: Stephen J. Wright

Publisher: SIAM

Published: 1997-01-01

Total Pages: 309

ISBN-13: 9781611971453

DOWNLOAD EBOOK

In the past decade, primal-dual algorithms have emerged as the most important and useful algorithms from the interior-point class. This book presents the major primal-dual algorithms for linear programming in straightforward terms. A thorough description of the theoretical properties of these methods is given, as are a discussion of practical and computational aspects and a summary of current software. This is an excellent, timely, and well-written work. The major primal-dual algorithms covered in this book are path-following algorithms (short- and long-step, predictor-corrector), potential-reduction algorithms, and infeasible-interior-point algorithms. A unified treatment of superlinear convergence, finite termination, and detection of infeasible problems is presented. Issues relevant to practical implementation are also discussed, including sparse linear algebra and a complete specification of Mehrotra's predictor-corrector algorithm. Also treated are extensions of primal-dual algorithms to more general problems such as monotone complementarity, semidefinite programming, and general convex programming problems.


Nonlinear Programming

Nonlinear Programming

Author: Anthony V. Fiacco

Publisher: SIAM

Published: 1990-01-01

Total Pages: 226

ISBN-13: 9781611971316

DOWNLOAD EBOOK

Recent interest in interior point methods generated by Karmarkar's Projective Scaling Algorithm has created a new demand for this book because the methods that have followed from Karmarkar's bear a close resemblance to those described. There is no other source for the theoretical background of the logarithmic barrier function and other classical penalty functions. Analyzes in detail the "central" or "dual" trajectory used by modern path following and primal/dual methods for convex and general linear programming. As researchers begin to extend these methods to convex and general nonlinear programming problems, this book will become indispensable to them.


Interior-point Polynomial Algorithms in Convex Programming

Interior-point Polynomial Algorithms in Convex Programming

Author: Yurii Nesterov

Publisher: SIAM

Published: 1994-01-01

Total Pages: 414

ISBN-13: 9781611970791

DOWNLOAD EBOOK

Specialists working in the areas of optimization, mathematical programming, or control theory will find this book invaluable for studying interior-point methods for linear and quadratic programming, polynomial-time methods for nonlinear convex programming, and efficient computational methods for control problems and variational inequalities. A background in linear algebra and mathematical programming is necessary to understand the book. The detailed proofs and lack of "numerical examples" might suggest that the book is of limited value to the reader interested in the practical aspects of convex optimization, but nothing could be further from the truth. An entire chapter is devoted to potential reduction methods precisely because of their great efficiency in practice.


Interior Point Algorithms

Interior Point Algorithms

Author: Yinyu Ye

Publisher: John Wiley & Sons

Published: 2011-10-11

Total Pages: 440

ISBN-13: 1118030958

DOWNLOAD EBOOK

The first comprehensive review of the theory and practice of one oftoday's most powerful optimization techniques. The explosive growth of research into and development of interiorpoint algorithms over the past two decades has significantlyimproved the complexity of linear programming and yielded some oftoday's most sophisticated computing techniques. This book offers acomprehensive and thorough treatment of the theory, analysis, andimplementation of this powerful computational tool. Interior Point Algorithms provides detailed coverage of all basicand advanced aspects of the subject. Beginning with an overview offundamental mathematical procedures, Professor Yinyu Ye movesswiftly on to in-depth explorations of numerous computationalproblems and the algorithms that have been developed to solve them.An indispensable text/reference for students and researchers inapplied mathematics, computer science, operations research,management science, and engineering, Interior Point Algorithms: * Derives various complexity results for linear and convexprogramming * Emphasizes interior point geometry and potential theory * Covers state-of-the-art results for extension, implementation,and other cutting-edge computational techniques * Explores the hottest new research topics, including nonlinearprogramming and nonconvex optimization.


Linear Network Optimization

Linear Network Optimization

Author: Dimitri P. Bertsekas

Publisher: MIT Press

Published: 1991

Total Pages: 384

ISBN-13: 9780262023344

DOWNLOAD EBOOK

Linear Network Optimization presents a thorough treatment of classical approaches to network problems such as shortest path, max-flow, assignment, transportation, and minimum cost flow problems.


Introduction to Methods for Nonlinear Optimization

Introduction to Methods for Nonlinear Optimization

Author: Luigi Grippo

Publisher: Springer Nature

Published: 2023-05-27

Total Pages: 721

ISBN-13: 3031267907

DOWNLOAD EBOOK

This book has two main objectives: • to provide a concise introduction to nonlinear optimization methods, which can be used as a textbook at a graduate or upper undergraduate level; • to collect and organize selected important topics on optimization algorithms, not easily found in textbooks, which can provide material for advanced courses or can serve as a reference text for self-study and research. The basic material on unconstrained and constrained optimization is organized into two blocks of chapters: • basic theory and optimality conditions • unconstrained and constrained algorithms. These topics are treated in short chapters that contain the most important results in theory and algorithms, in a way that, in the authors’ experience, is suitable for introductory courses. A third block of chapters addresses methods that are of increasing interest for solving difficult optimization problems. Difficulty can be typically due to the high nonlinearity of the objective function, ill-conditioning of the Hessian matrix, lack of information on first-order derivatives, the need to solve large-scale problems. In the book various key subjects are addressed, including: exact penalty functions and exact augmented Lagrangian functions, non monotone methods, decomposition algorithms, derivative free methods for nonlinear equations and optimization problems. The appendices at the end of the book offer a review of the essential mathematical background, including an introduction to convex analysis that can make part of an introductory course.


Progress in Mathematical Programming

Progress in Mathematical Programming

Author: Nimrod Megiddo

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 164

ISBN-13: 1461396174

DOWNLOAD EBOOK

The starting point of this volume was a conference entitled "Progress in Mathematical Programming," held at the Asilomar Conference Center in Pacific Grove, California, March 1-4, 1987. The main topic of the conference was developments in the theory and practice of linear programming since Karmarkar's algorithm. There were thirty presentations and approximately fifty people attended. Presentations included new algorithms, new analyses of algorithms, reports on computational experience, and some other topics related to the practice of mathematical programming. Interestingly, most of the progress reported at the conference was on the theoretical side. Several new polynomial algorithms for linear program ming were presented (Barnes-Chopra-Jensen, Goldfarb-Mehrotra, Gonzaga, Kojima-Mizuno-Yoshise, Renegar, Todd, Vaidya, and Ye). Other algorithms presented were by Betke-Gritzmann, Blum, Gill-Murray-Saunders-Wright, Nazareth, Vial, and Zikan-Cottle. Efforts in the theoretical analysis of algo rithms were also reported (Anstreicher, Bayer-Lagarias, Imai, Lagarias, Megiddo-Shub, Lagarias, Smale, and Vanderbei). Computational experiences were reported by Lustig, Tomlin, Todd, Tone, Ye, and Zikan-Cottle. Of special interest, although not in the main direction discussed at the conference, was the report by Rinaldi on the practical solution of some large traveling salesman problems. At the time of the conference, it was still not clear whether the new algorithms developed since Karmarkar's algorithm would replace the simplex method in practice. Alan Hoffman presented results on conditions under which linear programming problems can be solved by greedy algorithms."


Interior Point Methods for Linear Optimization

Interior Point Methods for Linear Optimization

Author: Cornelis Roos

Publisher: Springer Science & Business Media

Published: 2006-02-08

Total Pages: 501

ISBN-13: 0387263799

DOWNLOAD EBOOK

The era of interior point methods (IPMs) was initiated by N. Karmarkar’s 1984 paper, which triggered turbulent research and reshaped almost all areas of optimization theory and computational practice. This book offers comprehensive coverage of IPMs. It details the main results of more than a decade of IPM research. Numerous exercises are provided to aid in understanding the material.


Linear and Nonlinear Programming

Linear and Nonlinear Programming

Author: David G. Luenberger

Publisher: Springer Nature

Published: 2021-10-31

Total Pages: 609

ISBN-13: 3030854507

DOWNLOAD EBOOK

The 5th edition of this classic textbook covers the central concepts of practical optimization techniques, with an emphasis on methods that are both state-of-the-art and popular. One major insight is the connection between the purely analytical character of an optimization problem and the behavior of algorithms used to solve that problem. End-of-chapter exercises are provided for all chapters. The material is organized into three separate parts. Part I offers a self-contained introduction to linear programming. The presentation in this part is fairly conventional, covering the main elements of the underlying theory of linear programming, many of the most effective numerical algorithms, and many of its important special applications. Part II, which is independent of Part I, covers the theory of unconstrained optimization, including both derivations of the appropriate optimality conditions and an introduction to basic algorithms. This part of the book explores the general properties of algorithms and defines various notions of convergence. In turn, Part III extends the concepts developed in the second part to constrained optimization problems. Except for a few isolated sections, this part is also independent of Part I. As such, Parts II and III can easily be used without reading Part I and, in fact, the book has been used in this way at many universities. New to this edition are popular topics in data science and machine learning, such as the Markov Decision Process, Farkas’ lemma, convergence speed analysis, duality theories and applications, various first-order methods, stochastic gradient method, mirror-descent method, Frank-Wolf method, ALM/ADMM method, interior trust-region method for non-convex optimization, distributionally robust optimization, online linear programming, semidefinite programming for sensor-network localization, and infeasibility detection for nonlinear optimization.


Nonlinear Programming

Nonlinear Programming

Author: Mokhtar S. Bazaraa

Publisher: John Wiley & Sons

Published: 2013-06-12

Total Pages: 818

ISBN-13: 1118626303

DOWNLOAD EBOOK

COMPREHENSIVE COVERAGE OF NONLINEAR PROGRAMMING THEORY AND ALGORITHMS, THOROUGHLY REVISED AND EXPANDED Nonlinear Programming: Theory and Algorithms—now in an extensively updated Third Edition—addresses the problem of optimizing an objective function in the presence of equality and inequality constraints. Many realistic problems cannot be adequately represented as a linear program owing to the nature of the nonlinearity of the objective function and/or the nonlinearity of any constraints. The Third Edition begins with a general introduction to nonlinear programming with illustrative examples and guidelines for model construction. Concentration on the three major parts of nonlinear programming is provided: Convex analysis with discussion of topological properties of convex sets, separation and support of convex sets, polyhedral sets, extreme points and extreme directions of polyhedral sets, and linear programming Optimality conditions and duality with coverage of the nature, interpretation, and value of the classical Fritz John (FJ) and the Karush-Kuhn-Tucker (KKT) optimality conditions; the interrelationships between various proposed constraint qualifications; and Lagrangian duality and saddle point optimality conditions Algorithms and their convergence, with a presentation of algorithms for solving both unconstrained and constrained nonlinear programming problems Important features of the Third Edition include: New topics such as second interior point methods, nonconvex optimization, nondifferentiable optimization, and more Updated discussion and new applications in each chapter Detailed numerical examples and graphical illustrations Essential coverage of modeling and formulating nonlinear programs Simple numerical problems Advanced theoretical exercises The book is a solid reference for professionals as well as a useful text for students in the fields of operations research, management science, industrial engineering, applied mathematics, and also in engineering disciplines that deal with analytical optimization techniques. The logical and self-contained format uniquely covers nonlinear programming techniques with a great depth of information and an abundance of valuable examples and illustrations that showcase the most current advances in nonlinear problems.