Applications of Research Reactors

Applications of Research Reactors

Author: International Atomic Energy Agency

Publisher: International Atomic Energy Agency

Published: 2014

Total Pages: 108

ISBN-13: 9789201450104

DOWNLOAD EBOOK

This publication is a comprehensive study that reviews the current situation in a great number of applications of research reactors. It revises the contents of IAEA TECDOC-1234, The Applications of Research Reactors, giving detailed updates on each field of research reactor uses worldwide. Reactors of all sizes and capabilities can benefit from the sharing of current practices and research enabled via this updated version, which describes the requirements for practicing methods as diverse as neutron activation analysis, education and training, neutron scattering and neutron imaging, silicon doping and radioisotope production, material/fuel irradiation and testing, and some others. Many underutilised research reactors can learn how to diversify their technical capabilities, staff and potential commercial partners and users seeking research reactor services and products. The content of the publication has also been strengthened in terms of current issues facing the vast majority of research reactors by including sections describing user and customer relations as well as strategic planning considerations.


Molybdenum-99 for Medical Imaging

Molybdenum-99 for Medical Imaging

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2016-11-28

Total Pages: 264

ISBN-13: 0309445310

DOWNLOAD EBOOK

The decay product of the medical isotope molybdenum-99 (Mo-99), technetium-99m (Tc-99m), and associated medical isotopes iodine-131 (I-131) and xenon-133 (Xe-133) are used worldwide for medical diagnostic imaging or therapy. The United States consumes about half of the world's supply of Mo-99, but there has been no domestic (i.e., U.S.-based) production of this isotope since the late 1980s. The United States imports Mo-99 for domestic use from Australia, Canada, Europe, and South Africa. Mo-99 and Tc-99m cannot be stockpiled for use because of their short half-lives. Consequently, they must be routinely produced and delivered to medical imaging centers. Almost all Mo-99 for medical use is produced by irradiating highly enriched uranium (HEU) targets in research reactors, several of which are over 50 years old and are approaching the end of their operating lives. Unanticipated and extended shutdowns of some of these old reactors have resulted in severe Mo-99 supply shortages in the United States and other countries. Some of these shortages have disrupted the delivery of medical care. Molybdenum-99 for Medical Imaging examines the production and utilization of Mo-99 and associated medical isotopes, and provides recommendations for medical use.


Managing Nuclear Projects

Managing Nuclear Projects

Author: Jas Devgun

Publisher: Elsevier

Published: 2013-08-31

Total Pages: 385

ISBN-13: 0857097261

DOWNLOAD EBOOK

In addition to the nuclear power industry, the nuclear field has extensive projects and activities in the areas of research reactors, medical isotope production, decommissioning, and remediation of contaminated sites. Managing nuclear projects focuses on the management aspects of nuclear projects in a wide range of areas with emphasis on process, requirements, and lessons learned.Part one provides a general overview of the nuclear industry including basic principles for managing nuclear projects, nuclear safety culture, management of worker risk, training, and management of complex projects. Part two focuses on managing reactor projects with discussion on a variety of topics including management of research reactor projects, medical radioisotope production, power reactor modifications, power uprates, outage management, and management of nuclear-related R&D. Chapters in part three highlight the areas of radioactive waste and spent fuel management, reactor decommissioning, and remediation of radioactively contaminated sites. Finally, part four explores regulation, guidance and emergency management in the nuclear industry. Chapters discuss quality assurance and auditing programs, licensing procedures for nuclear installations, emergency preparedness, management of nuclear crises, and international nuclear cooperation.With its distinguished editor and contributors, Managing Nuclear Projects is a valuable resource for project managers, plant managers, engineers, regulators, training professionals, consultants, and academics. - Examines the basic principles of managing nuclear projects focussing on processes and requirements - Discusses the management of reactor projects - Explores regulation, guidance and emergency management in the nuclear industry


Thorium Fuel Cycle

Thorium Fuel Cycle

Author: International Atomic Energy Agency

Publisher:

Published: 2005

Total Pages: 120

ISBN-13:

DOWNLOAD EBOOK

Provides a critical review of the thorium fuel cycle: potential benefits and challenges in the thorium fuel cycle, mainly based on the latest developments at the front end of the fuel cycle, applying thorium fuel cycle options, and at the back end of the thorium fuel cycle.


Reducing the Use of Highly Enriched Uranium in Civilian Research Reactors

Reducing the Use of Highly Enriched Uranium in Civilian Research Reactors

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2016-02-12

Total Pages: 205

ISBN-13: 0309379210

DOWNLOAD EBOOK

The continued presence of highly enriched uranium (HEU) in civilian installations such as research reactors poses a threat to national and international security. Minimization, and ultimately elimination, of HEU in civilian research reactors worldwide has been a goal of U.S. policy and programs since 1978. Today, 74 civilian research reactors around the world, including 8 in the United States, use or are planning to use HEU fuel. Since the last National Academies of Sciences, Engineering, and Medicine report on this topic in 2009, 28 reactors have been either shut down or converted from HEU to low enriched uranium fuel. Despite this progress, the large number of remaining HEU-fueled reactors demonstrates that an HEU minimization program continues to be needed on a worldwide scale. Reducing the Use of Highly Enriched Uranium in Civilian Research Reactors assesses the status of and progress toward eliminating the worldwide use of HEU fuel in civilian research and test reactors.


Characterization and Testing of Materials for Nuclear Reactors

Characterization and Testing of Materials for Nuclear Reactors

Author: International Atomic Energy Agency

Publisher:

Published: 2007

Total Pages: 158

ISBN-13:

DOWNLOAD EBOOK

Industrial growth, energy consumption are seen as measures towards economic developments. With increase in industrial development worldwide, the demand of energy is continually on the rise. Today, the energy industry is facing many challenges. Nuclear fission and nuclear fusion are seen as important future energy sources. Development of innovative reactor designs with large efficiency for fuel burn up is one of the needs of fission reactors. The materials resistant to high dose of radiations in fusion reactors is another major challenge. The production of electricity without global warming is an important pressing demand on the energy sector. The demands on quality control of components for nuclear and heavy industry are very stringent. Development of well characterized, high quality materials is therefore essential for safe, efficient and reliable operation of engineering components. The diagnosis of failure of machinery parts comes from the post operational characterization of materials. Various destructive and non-destructive techniques are used for this purpose. Research reactors have played an important role in non-destructive characterization of materials and have contributed to technology development. This publication focuses on characterization of materials for industries in general and nuclear energy sector in particular. The main focus is on research reactor based techniques with some discussion on other allied methods like positron annihilation.--Publisher's description.


Isotopes for Medicine and the Life Sciences

Isotopes for Medicine and the Life Sciences

Author: Institute of Medicine

Publisher: National Academies Press

Published: 1995-01-27

Total Pages: 144

ISBN-13: 0309176697

DOWNLOAD EBOOK

Radioactive isotopes and enriched stable isotopes are used widely in medicine, agriculture, industry, and science, where their application allows us to perform many tasks more accurately, more simply, less expensively, and more quickly than would otherwise be possible. Indeed, in many casesâ€"for example, biological tracersâ€"there is no alternative. In a stellar example of "technology transfer" that began before the term was popular, the Department of Energy (DOE) and its predecessors has supported the development and application of isotopes and their transfer to the private sector. The DOE is now at an important crossroads: Isotope production has suffered as support for DOE's laboratories has declined. In response to a DOE request, this book is an intensive examination of isotope production and availability, including the education and training of those who will be needed to sustain the flow of radioactive and stable materials from their sources to the laboratories and medical care facilities in which they are used. Chapters include an examination of enriched stable isotopes; reactor and accelerator-produced radionuclides; partnerships among industries, national laboratories, and universities; and national isotope policy.