Practical Machine Learning with Rust

Practical Machine Learning with Rust

Author: Joydeep Bhattacharjee

Publisher: Apress

Published: 2019-12-10

Total Pages: 362

ISBN-13: 1484251210

DOWNLOAD EBOOK

Explore machine learning in Rust and learn about the intricacies of creating machine learning applications. This book begins by covering the important concepts of machine learning such as supervised, unsupervised, and reinforcement learning, and the basics of Rust. Further, you’ll dive into the more specific fields of machine learning, such as computer vision and natural language processing, and look at the Rust libraries that help create applications for those domains. We will also look at how to deploy these applications either on site or over the cloud. After reading Practical Machine Learning with Rust, you will have a solid understanding of creating high computation libraries using Rust. Armed with the knowledge of this amazing language, you will be able to create applications that are more performant, memory safe, and less resource heavy. What You Will Learn Write machine learning algorithms in RustUse Rust libraries for different tasks in machine learningCreate concise Rust packages for your machine learning applicationsImplement NLP and computer vision in RustDeploy your code in the cloud and on bare metal servers Who This Book Is For Machine learning engineers and software engineers interested in building machine learning applications in Rust.


Practical Rust Projects

Practical Rust Projects

Author: Shing Lyu

Publisher: Apress

Published: 2020-02-27

Total Pages: 265

ISBN-13: 1484255992

DOWNLOAD EBOOK

Go beyond the basics and build complete applications using the Rust programming language. The applications in this book include a high-performance web client, a microcontroller (for a robot, for example), a game, an app that runs on Android, and an application that incorporates AI and machine learning. Each chapter will be organized in the following format: what this kind of application looks like; requirements and user stories of our example program; an introduction to the Rust libraries used; the actual implementation of the example program, including common pitfalls and their solutions; and a brief comparison of libraries for building each application, if there is no clear winner. Practical Rust Projects will open your eyes to the world of practical applications of Rust. After reading the book, you will be able to apply your Rust knowledge to build your own projects. What You Will Learn Write Rust code that runs on microcontrollers Build a 2D game Create Rust-based mobile Android applications Use Rust to build AI and machine learning applications Who This Book Is For Someone with basic Rust knowledge, wishing to learn more about how to apply Rust in a real-world scenario.


The Rust Programming Language (Covers Rust 2018)

The Rust Programming Language (Covers Rust 2018)

Author: Steve Klabnik

Publisher: No Starch Press

Published: 2019-09-03

Total Pages: 561

ISBN-13: 1718500459

DOWNLOAD EBOOK

The official book on the Rust programming language, written by the Rust development team at the Mozilla Foundation, fully updated for Rust 2018. The Rust Programming Language is the official book on Rust: an open source systems programming language that helps you write faster, more reliable software. Rust offers control over low-level details (such as memory usage) in combination with high-level ergonomics, eliminating the hassle traditionally associated with low-level languages. The authors of The Rust Programming Language, members of the Rust Core Team, share their knowledge and experience to show you how to take full advantage of Rust's features--from installation to creating robust and scalable programs. You'll begin with basics like creating functions, choosing data types, and binding variables and then move on to more advanced concepts, such as: Ownership and borrowing, lifetimes, and traits Using Rust's memory safety guarantees to build fast, safe programs Testing, error handling, and effective refactoring Generics, smart pointers, multithreading, trait objects, and advanced pattern matching Using Cargo, Rust's built-in package manager, to build, test, and document your code and manage dependencies How best to use Rust's advanced compiler with compiler-led programming techniques You'll find plenty of code examples throughout the book, as well as three chapters dedicated to building complete projects to test your learning: a number guessing game, a Rust implementation of a command line tool, and a multithreaded server. New to this edition: An extended section on Rust macros, an expanded chapter on modules, and appendixes on Rust development tools and editions.


Rust in Action

Rust in Action

Author: Tim McNamara

Publisher: Simon and Schuster

Published: 2021-09-07

Total Pages: 454

ISBN-13: 163835622X

DOWNLOAD EBOOK

"This well-written book will help you make the most of what Rust has to offer." - Ramnivas Laddad, author of AspectJ in Action Rust in Action is a hands-on guide to systems programming with Rust. Written for inquisitive programmers, it presents real-world use cases that go far beyond syntax and structure. Summary Rust in Action introduces the Rust programming language by exploring numerous systems programming concepts and techniques. You'll be learning Rust by delving into how computers work under the hood. You'll find yourself playing with persistent storage, memory, networking and even tinkering with CPU instructions. The book takes you through using Rust to extend other applications and teaches you tricks to write blindingly fast code. You'll also discover parallel and concurrent programming. Filled to the brim with real-life use cases and scenarios, you'll go beyond the Rust syntax and see what Rust has to offer in real-world use cases. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Rust is the perfect language for systems programming. It delivers the low-level power of C along with rock-solid safety features that let you code fearlessly. Ideal for applications requiring concurrency, Rust programs are compact, readable, and blazingly fast. Best of all, Rust’s famously smart compiler helps you avoid even subtle coding errors. About the book Rust in Action is a hands-on guide to systems programming with Rust. Written for inquisitive programmers, it presents real-world use cases that go far beyond syntax and structure. You’ll explore Rust implementations for file manipulation, networking, and kernel-level programming and discover awesome techniques for parallelism and concurrency. Along the way, you’ll master Rust’s unique borrow checker model for memory management without a garbage collector. What's inside Elementary to advanced Rust programming Practical examples from systems programming Command-line, graphical and networked applications About the reader For intermediate programmers. No previous experience with Rust required. About the author Tim McNamara uses Rust to build data processing pipelines and generative art. He is an expert in natural language processing and data engineering. Table of Contents 1 Introducing Rust PART 1 RUST LANGUAGE DISTINCTIVES 2 Language foundations 3 Compound data types 4 Lifetimes, ownership, and borrowing PART 2 DEMYSTIFYING SYSTEMS PROGRAMMING 5 Data in depth 6 Memory 7 Files and storage 8 Networking 9 Time and timekeeping 10 Processes, threads, and containers 11 Kernel 12 Signals, interrupts, and exceptions


Hands-On Machine Learning with R

Hands-On Machine Learning with R

Author: Brad Boehmke

Publisher: CRC Press

Published: 2019-11-07

Total Pages: 373

ISBN-13: 1000730433

DOWNLOAD EBOOK

Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.


The Art of Machine Learning

The Art of Machine Learning

Author: Norman Matloff

Publisher: No Starch Press

Published: 2024-01-09

Total Pages: 271

ISBN-13: 1718502109

DOWNLOAD EBOOK

Learn to expertly apply a range of machine learning methods to real data with this practical guide. Packed with real datasets and practical examples, The Art of Machine Learning will help you develop an intuitive understanding of how and why ML methods work, without the need for advanced math. As you work through the book, you’ll learn how to implement a range of powerful ML techniques, starting with the k-Nearest Neighbors (k-NN) method and random forests, and moving on to gradient boosting, support vector machines (SVMs), neural networks, and more. With the aid of real datasets, you’ll delve into regression models through the use of a bike-sharing dataset, explore decision trees by leveraging New York City taxi data, and dissect parametric methods with baseball player stats. You’ll also find expert tips for avoiding common problems, like handling “dirty” or unbalanced data, and how to troubleshoot pitfalls. You’ll also explore: How to deal with large datasets and techniques for dimension reduction Details on how the Bias-Variance Trade-off plays out in specific ML methods Models based on linear relationships, including ridge and LASSO regression Real-world image and text classification and how to handle time series data Machine learning is an art that requires careful tuning and tweaking. With The Art of Machine Learning as your guide, you’ll master the underlying principles of ML that will empower you to effectively use these models, rather than simply provide a few stock actions with limited practical use. Requirements: A basic understanding of graphs and charts and familiarity with the R programming language


Reinforcement Learning, second edition

Reinforcement Learning, second edition

Author: Richard S. Sutton

Publisher: MIT Press

Published: 2018-11-13

Total Pages: 549

ISBN-13: 0262352702

DOWNLOAD EBOOK

The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.


Pragmatic AI

Pragmatic AI

Author: Noah Gift

Publisher: Addison-Wesley Professional

Published: 2018-07-12

Total Pages: 720

ISBN-13: 0134863917

DOWNLOAD EBOOK

Master Powerful Off-the-Shelf Business Solutions for AI and Machine Learning Pragmatic AI will help you solve real-world problems with contemporary machine learning, artificial intelligence, and cloud computing tools. Noah Gift demystifies all the concepts and tools you need to get results—even if you don’t have a strong background in math or data science. Gift illuminates powerful off-the-shelf cloud offerings from Amazon, Google, and Microsoft, and demonstrates proven techniques using the Python data science ecosystem. His workflows and examples help you streamline and simplify every step, from deployment to production, and build exceptionally scalable solutions. As you learn how machine language (ML) solutions work, you’ll gain a more intuitive understanding of what you can achieve with them and how to maximize their value. Building on these fundamentals, you’ll walk step-by-step through building cloud-based AI/ML applications to address realistic issues in sports marketing, project management, product pricing, real estate, and beyond. Whether you’re a business professional, decision-maker, student, or programmer, Gift’s expert guidance and wide-ranging case studies will prepare you to solve data science problems in virtually any environment. Get and configure all the tools you’ll need Quickly review all the Python you need to start building machine learning applications Master the AI and ML toolchain and project lifecycle Work with Python data science tools such as IPython, Pandas, Numpy, Juypter Notebook, and Sklearn Incorporate a pragmatic feedback loop that continually improves the efficiency of your workflows and systems Develop cloud AI solutions with Google Cloud Platform, including TPU, Colaboratory, and Datalab services Define Amazon Web Services cloud AI workflows, including spot instances, code pipelines, boto, and more Work with Microsoft Azure AI APIs Walk through building six real-world AI applications, from start to finish Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.


Programming Rust

Programming Rust

Author: Jim Blandy

Publisher: "O'Reilly Media, Inc."

Published: 2021-06-11

Total Pages: 738

ISBN-13: 149205254X

DOWNLOAD EBOOK

Systems programming provides the foundation for the world's computation. Writing performance-sensitive code requires a programming language that puts programmers in control of how memory, processor time, and other system resources are used. The Rust systems programming language combines that control with a modern type system that catches broad classes of common mistakes, from memory management errors to data races between threads. With this practical guide, experienced systems programmers will learn how to successfully bridge the gap between performance and safety using Rust. Jim Blandy, Jason Orendorff, and Leonora Tindall demonstrate how Rust's features put programmers in control over memory consumption and processor use by combining predictable performance with memory safety and trustworthy concurrency. You'll learn: Rust's fundamental data types and the core concepts of ownership and borrowing How to write flexible, efficient code with traits and generics How to write fast, multithreaded code without data races Rust's key power tools: closures, iterators, and asynchronous programming Collections, strings and text, input and output, macros, unsafe code, and foreign function interfaces This revised, updated edition covers the Rust 2021 Edition.


Practical System Programming for Rust Developers

Practical System Programming for Rust Developers

Author: Prabhu Eshwarla

Publisher: Packt Publishing Ltd

Published: 2020-12-24

Total Pages: 388

ISBN-13: 1800562012

DOWNLOAD EBOOK

Explore various Rust features, data structures, libraries, and toolchain to build modern systems software with the help of hands-on examples Key FeaturesLearn techniques to design and build system tools and utilities in RustExplore the different features of the Rust standard library for interacting with operating systemsGain an in-depth understanding of the Rust programming language by writing low-level softwareBook Description Modern programming languages such as Python, JavaScript, and Java have become increasingly accepted for application-level programming, but for systems programming, C and C++ are predominantly used due to the need for low-level control of system resources. Rust promises the best of both worlds: the type safety of Java, and the speed and expressiveness of C++, while also including memory safety without a garbage collector. This book is a comprehensive introduction if you’re new to Rust and systems programming and are looking to build reliable and efficient systems software without C or C++. The book takes a unique approach by starting each topic with Linux kernel concepts and APIs relevant to that topic. You’ll also explore how system resources can be controlled from Rust. As you progress, you’ll delve into advanced topics. You’ll cover network programming, focusing on aspects such as working with low-level network primitives and protocols in Rust, before going on to learn how to use and compile Rust with WebAssembly. Later chapters will take you through practical code examples and projects to help you build on your knowledge. By the end of this Rust programming book, you will be equipped with practical skills to write systems software tools, libraries, and utilities in Rust. What you will learnGain a solid understanding of how system resources are managedUse Rust confidently to control and operate a Linux or Unix systemUnderstand how to write a host of practical systems software tools and utilitiesDelve into memory management with the memory layout of Rust programsDiscover the capabilities and features of the Rust Standard LibraryExplore external crates to improve productivity for future Rust programming projectsWho this book is for This book is for developers with basic knowledge of Rust but little to no knowledge or experience of systems programming. System programmers who want to consider Rust as an alternative to C or C++ will also find this book useful.