This book addresses the uncertainties of wind power modeled as interval numbers and assesses the physical modeling and methods for interval power flow, interval economic dispatch and interval robust economic dispatch. In particular, the optimization models are set up to address these topics and the state-of-the-art methods are employed to efficiently solve the proposed models. Several standard IEEE test systems as well as real-world large-scale Polish power systems have been tested to verify the effectiveness of the proposed models and methods. These methods can be further applied to other research fields that are involved with uncertainty.
This book outlines the challenges that increasing amounts of renewable and distributed energy represent when integrated into established electricity grid infrastructures, offering a range of potential solutions that will support engineers, grid operators, system planners, utilities, and policymakers alike in their efforts to realize the vision of moving toward greener, more secure energy portfolios. Covering all major renewable sources, from wind and solar, to waste energy and hydropower, the authors highlight case studies of successful integration scenarios to demonstrate pathways toward overcoming the complexities created by variable and distributed generation.
Stability-Constrained Optimization for Modern Power System Operation and Planning Comprehensive treatment of an aspect of stability constrained operations and planning, including the latest research and engineering practices Stability-Constrained Optimization for Modern Power System Operation and Planning focuses on the subject of power system stability. Unlike other books in this field, which focus mainly on the dynamic modeling, stability analysis, and controller design for power systems, this book is instead dedicated to stability-constrained optimization methodologies for power system stability enhancement, including transient stability-constrained power system dispatch and operational control, and voltage stability-constrained dynamic VAR Resources planning in the power grid. Authored by experts with established track records in both research and industry, Stability-Constrained Optimization for Modern Power System Operation and Planning covers three parts: Overview of power system stability, including definition, classification, phenomenon, mathematical models and analysis tools for stability assessment, as well as a review of recent large-scale blackouts in the world Transient stability-constrained optimal power flow (TSC-OPF) and transient stability constrained-unit commitment (TSC-UC) for power system dispatch and operational control, including a series of optimization model formulations, transient stability constraint construction and extraction methods, and efficient solution approaches Optimal planning of dynamic VAR Resources (such as STATCOM and SVC) in power system for voltage stability enhancement, including a set of voltage stability indices, candidate bus selection methods, multi-objective optimization model formulations, and high-quality solution approaches Stability-Constrained Optimization for Modern Power System Operation and Planning provides the latest research findings to scholars, researchers, and postgraduate students who are seeking optimization methodologies for power system stability enhancement, while also offering key practical methods to power system operators, planners, and optimization algorithm developers in the power industry.
Smart Power Distribution Systems: Control, Communication, and Optimization explains how diverse technologies work to build and maintain smart grids around the globe. Yang, Yang and Li present the most recent advances in the control, communication and optimization of smart grids and provide unique insight into power system control, sensing and communication, and optimization technologies. The book covers control challenges for renewable energy and smart grids, communication in smart power systems, and optimization challenges in smart power system operations. Each area discussed focuses on the scientific innovations relating to the approaches, methods and algorithmic solutions presented. Readers will develop sound knowledge and gain insights into the integration of renewable energy generation in smart power distribution systems. - Presents the latest technological advances in electric power distribution networks, with a particular focus on methodologies, approaches and algorithms - Provides insights into the most recent research and developments from expert contributors from across the world - Presents a clear and methodical structure that guides the reader through discussion and analysis, providing unique insights and sound knowledge along the way
A guide to a multi-disciplinary approach that includes perspectives from noted experts in the energy and utilities fields Advances in Energy Systems offers a stellar collection of articles selected from the acclaimed journal Wiley Interdisciplinary Review: Energy and Environment. The journalcovers all aspects of energy policy, science and technology, environmental and climate change. The book covers a wide range of relevant issues related to the systemic changes for large-scale integration of renewable energy as part of the on-going energy transition. The book addresses smart energy systems technologies, flexibility measures, recent changes in the marketplace and current policies. With contributions from a list of internationally renowned experts, the book deals with the hot topic of systems integration for future energy systems and energy transition. This important resource: Contains contributions from noted experts in the field Covers a broad range of topics on the topic of renewable energy Explores the technical impacts of high shares of wind and solar power Offers a review of international smart-grid policies Includes information on wireless power transmission Presents an authoritative view of micro-grids Contains a wealth of other relevant topics Written forenergy planners, energy market professionals and technology developers, Advances in Energy Systems is an essential guide with contributions from an international panel of experts that addresses the most recent smart energy technologies.
The aim of this book was to collect the most recent methods developed for NSO and its practical applications. The book contains seven papers: The first is the foreword by the Guest Editors giving a brief review of NSO and its real-life applications and acknowledging the outstanding contributions of Professor Adil Bagirov to both the theoretical and practical aspects of NSO. The second paper introduces a new and very efficient algorithm for solving uncertain unit-commitment (UC) problems. The third paper proposes a new nonsmooth version of the generalized damped Gauss–Newton method for solving nonlinear complementarity problems. In the fourth paper, the abs-linear representation of piecewise linear functions is extended to yield simultaneously their DC decomposition as well as the pair of generalized gradients. The fifth paper presents the use of biased-randomized algorithms as an effective methodology to cope with NP-hard and nonsmooth optimization problems in many practical applications. In the sixth paper, a problem concerning the scheduling of nuclear waste disposal is modeled as a nonsmooth multiobjective mixed-integer nonlinear optimization problem, and a novel method using the two-slope parameterized achievement scalarizing functions is introduced. Finally, the last paper considers binary classification of a multiple instance learning problem and formulates the learning problem as a nonconvex nonsmooth unconstrained optimization problem with a DC objective function.
The second edition of the highly acclaimed Wind Power in Power Systems has been thoroughly revised and expanded to reflect the latest challenges associated with increasing wind power penetration levels. Since its first release, practical experiences with high wind power penetration levels have significantly increased. This book presents an overview of the lessons learned in integrating wind power into power systems and provides an outlook of the relevant issues and solutions to allow even higher wind power penetration levels. This includes the development of standard wind turbine simulation models. This extensive update has 23 brand new chapters in cutting-edge areas including offshore wind farms and storage options, performance validation and certification for grid codes, and the provision of reactive power and voltage control from wind power plants. Key features: Offers an international perspective on integrating a high penetration of wind power into the power system, from basic network interconnection to industry deregulation; Outlines the methodology and results of European and North American large-scale grid integration studies; Extensive practical experience from wind power and power system experts and transmission systems operators in Germany, Denmark, Spain, UK, Ireland, USA, China and New Zealand; Presents various wind turbine designs from the electrical perspective and models for their simulation, and discusses industry standards and world-wide grid codes, along with power quality issues; Considers concepts to increase penetration of wind power in power systems, from wind turbine, power plant and power system redesign to smart grid and storage solutions. Carefully edited for a highly coherent structure, this work remains an essential reference for power system engineers, transmission and distribution network operator and planner, wind turbine designers, wind project developers and wind energy consultants dealing with the integration of wind power into the distribution or transmission network. Up-to-date and comprehensive, it is also useful for graduate students, researchers, regulation authorities, and policy makers who work in the area of wind power and need to understand the relevant power system integration issues.
Wind power is currently considered as the fastest growing energy resource in the world. Technological advances and government subsidies have contributed in the rapid rise of Wind power systems. The Handbook on Wind Power Systems provides an overview on several aspects of wind power systems and is divided into four sections: optimization problems in wind power generation, grid integration of wind power systems, modeling, control and maintenance of wind facilities and innovative wind energy generation. The chapters are contributed by experts working on different aspects of wind energy generation and conversion.
The rapid development and utilization of renewable energy generations (REGs), such as wind power and photovoltaic power, is an important measure for modern power system to achieve carbon neutrality and solve global energy crisis. However, the randomness and volatility of renewable energy generations lead to serious reliability concerns and financial risks to different decision-makers, and the large-scale integration of power electronic brings huge challenges to the planning, operation and control optimization of renewable energy-based systems. Therefore, to achieve the integration of large-scale renewable energy generations, advanced planning, operation and control optimization methods and strategies for modern power systems are required to be developed based on the state-of-the-art power system technologies. The aim of this Research Topic is to report the latest advancements in planning, operation and control optimization of large-scale renewable energy generations in modern power system to solve potential difficulties and challenges.