Potential Theory, Surveys and Problems

Potential Theory, Surveys and Problems

Author: Josef Kral

Publisher: Springer

Published: 2007-02-08

Total Pages: 276

ISBN-13: 3540459529

DOWNLOAD EBOOK

The volume comprises eleven survey papers based on survey lectures delivered at the Conference in Prague in July 1987, which covered various facets of potential theory, including its applications in other areas. The survey papers deal with both classical and abstract potential theory and its relations to partial differential equations, stochastic processes and other branches such as numerical analysis and topology. A collection of problems from potential theory, compiled on the occasion of the conference, is included, with additional commentaries, in the second part of this volume.


Potential Theory - ICPT 94

Potential Theory - ICPT 94

Author: Josef Kral

Publisher: Walter de Gruyter

Published: 2011-10-13

Total Pages: 513

ISBN-13: 3110818574

DOWNLOAD EBOOK

The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.


Introduction to Heat Potential Theory

Introduction to Heat Potential Theory

Author: N. A. Watson

Publisher: American Mathematical Soc.

Published: 2012

Total Pages: 282

ISBN-13: 0821849980

DOWNLOAD EBOOK

This book is the first to be devoted entirely to the potential theory of the heat equation, and thus deals with time dependent potential theory. Its purpose is to give a logical, mathematically precise introduction to a subject where previously many proofs were not written in detail, due to their similarity with those of the potential theory of Laplace's equation. The approach to subtemperatures is a recent one, based on the Poisson integral representation of temperatures on a circular cylinder. Characterizations of subtemperatures in terms of heat balls and modified heat balls are proved, and thermal capacity is studied in detail. The generalized Dirichlet problem on arbitrary open sets is given a treatment that reflects its distinctive nature for an equation of parabolic type. Also included is some new material on caloric measure for arbitrary open sets. Each chapter concludes with bibliographical notes and open questions. The reader should have a good background in the calculus of functions of several variables, in the limiting processes and inequalities of analysis, in measure theory, and in general topology for Chapter 9.


Potential Theory

Potential Theory

Author: Masanori Kishi

Publisher: Walter de Gruyter

Published: 2011-05-02

Total Pages: 417

ISBN-13: 3110859068

DOWNLOAD EBOOK

The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.


Advances in Analysis and Geometry

Advances in Analysis and Geometry

Author: Tao Qian

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 380

ISBN-13: 3034878389

DOWNLOAD EBOOK

At the heart of Clifford analysis is the study of systems of special partial differential operators that arise naturally from the use of Clifford algebra as a calculus tool. This book focuses on the study of Dirac operators and related ones, together with applications in mathematics, physics and engineering. This book collects refereed papers from a satellite conference to the ICM 2002, plus invited contributions. All articles contain unpublished new results.


Maximum Principles and Sharp Constants for Solutions of Elliptic and Parabolic Systems

Maximum Principles and Sharp Constants for Solutions of Elliptic and Parabolic Systems

Author: Gershon Kresin

Publisher: American Mathematical Soc.

Published: 2012-08-15

Total Pages: 330

ISBN-13: 0821889818

DOWNLOAD EBOOK

The main goal of this book is to present results pertaining to various versions of the maximum principle for elliptic and parabolic systems of arbitrary order. In particular, the authors present necessary and sufficient conditions for validity of the classical maximum modulus principles for systems of second order and obtain sharp constants in inequalities of Miranda-Agmon type and in many other inequalities of a similar nature. Somewhat related to this topic are explicit formulas for the norms and the essential norms of boundary integral operators. The proofs are based on a unified approach using, on one hand, representations of the norms of matrix-valued integral operators whose target spaces are linear and finite dimensional, and, on the other hand, on solving certain finite dimensional optimization problems. This book reflects results obtained by the authors, and can be useful to research mathematicians and graduate students interested in partial differential equations.


Harmonic Analysis and Applications

Harmonic Analysis and Applications

Author: Carlos E. Kenig

Publisher: American Mathematical Soc.

Published: 2020-12-14

Total Pages: 345

ISBN-13: 1470461277

DOWNLOAD EBOOK

The origins of the harmonic analysis go back to an ingenious idea of Fourier that any reasonable function can be represented as an infinite linear combination of sines and cosines. Today's harmonic analysis incorporates the elements of geometric measure theory, number theory, probability, and has countless applications from data analysis to image recognition and from the study of sound and vibrations to the cutting edge of contemporary physics. The present volume is based on lectures presented at the summer school on Harmonic Analysis. These notes give fresh, concise, and high-level introductions to recent developments in the field, often with new arguments not found elsewhere. The volume will be of use both to graduate students seeking to enter the field and to senior researchers wishing to keep up with current developments.


Topics in Analysis and Its Applications

Topics in Analysis and Its Applications

Author: Grigor A. Barsegian

Publisher: Springer Science & Business Media

Published: 2004-07-06

Total Pages: 488

ISBN-13: 9781402020636

DOWNLOAD EBOOK

Proceedings of the NATO Advanced Research Workshop, Yerevan, Armenia, 22-25 September 2002


The Maz'ya Anniversary Collection

The Maz'ya Anniversary Collection

Author: Jürgen Rossmann

Publisher: Springer Science & Business Media

Published: 1999

Total Pages: 384

ISBN-13: 9783764362010

DOWNLOAD EBOOK

This is the first volume of a collection of articles dedicated to V.G Maz'ya on the occasion of his 60th birthday. It contains surveys on his work in different fields of mathematics or on areas to which he made essential contributions. Other articles of this book have their origin in the common work with Maz'ya. V.G Maz'ya is author or co-author of more than 300 scientific works on various fields of functional analysis, function theory, numerical analysis, partial differential equations and their application. The reviews in this book show his enormous productivity and the large variety of his work. The scond volume contains most of the invited lectures of the Conference on Functional Analysis, Partial Differential Equations and Applications held in Rostock in September 1998 in honor of V.G Maz'ya. Here different problems of functional analysis, potential theory, linear and nonlinear partial differential equations, theory of function spaces and numerical analysis are treated. The authors, who are outstanding experts in these fields, present surveys as well as new results.


Development Of Mathematics Between The World Wars, The: Case Studies, Examples And Analyses

Development Of Mathematics Between The World Wars, The: Case Studies, Examples And Analyses

Author: Martina Becvarova

Publisher: World Scientific

Published: 2021-05-14

Total Pages: 623

ISBN-13: 1786349329

DOWNLOAD EBOOK

The Development of Mathematics Between the World Wars traces the transformation of scientific life within mathematical communities during the interwar period in Central and Eastern Europe, specifically in Germany, Russia, Poland, Hungary, and Czechoslovakia. Throughout the book, in-depth mathematical analyses and examples are included for the benefit of the reader.World War I heavily affected academic life. In European countries, many talented researchers and students were killed in action and scientific activities were halted to resume only in the postwar years. However, this inhibition turned out to be a catalyst for the birth of a new generation of mathematicians, for the emergence of new ideas and theories and for the surprising creation of new and outstanding scientific schools.The final four chapters are not restricted to Central and Eastern Europe and deal with the development of mathematics between World War I and World War II. After describing the general state of mathematics at the end of the 19th century and the first third of the 20th century, three case studies dealing with selected mathematical disciplines are presented (set theory, potential theory, combinatorics), in a way accessible to a broad audience of mathematicians as well as historians of mathematics.