Post-irradiation Examination and In-pile Measurement Techniques for Water Reactor Fuels

Post-irradiation Examination and In-pile Measurement Techniques for Water Reactor Fuels

Author: International Atomic Energy Agency

Publisher: International Atomic Energy Agency

Published: 2010-02-01

Total Pages:

ISBN-13: 9789201627094

DOWNLOAD EBOOK

This publication represents a summary and proceedings of two technical meetings on the subjects of 1) hot cell post-irradiation examination (PIE) techniques and poolside inspection of water reactor fuel assemblies, and 2) fuel rod instrumentation and in-pile measurement techniques. It provides an overview of the status of in-pile and post-irradiation techniques of water reactor fuel examination with an emphasis on experimental methods applied to high burnup fuel. Further important items addressed at these meetings were the information on progress achieved in non-destructive and destructive PIE techniques used for investigation of water reactor fuels, advanced PIE techniques such as 3-D tomography, as well as advanced in-pile measurement techniques for a better understanding of mechanisms of fuel behavior under irradiation.


Comprehensive Nuclear Materials

Comprehensive Nuclear Materials

Author:

Publisher: Elsevier

Published: 2020-07-22

Total Pages: 4871

ISBN-13: 0081028660

DOWNLOAD EBOOK

Materials in a nuclear environment are exposed to extreme conditions of radiation, temperature and/or corrosion, and in many cases the combination of these makes the material behavior very different from conventional materials. This is evident for the four major technological challenges the nuclear technology domain is facing currently: (i) long-term operation of existing Generation II nuclear power plants, (ii) the design of the next generation reactors (Generation IV), (iii) the construction of the ITER fusion reactor in Cadarache (France), (iv) and the intermediate and final disposal of nuclear waste. In order to address these challenges, engineers and designers need to know the properties of a wide variety of materials under these conditions and to understand the underlying processes affecting changes in their behavior, in order to assess their performance and to determine the limits of operation. Comprehensive Nuclear Materials, Second Edition, Seven Volume Set provides broad ranging, validated summaries of all the major topics in the field of nuclear material research for fission as well as fusion reactor systems. Attention is given to the fundamental scientific aspects of nuclear materials: fuel and structural materials for fission reactors, waste materials, and materials for fusion reactors. The articles are written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource of information. Most of the chapters from the first Edition have been revised and updated and a significant number of new topics are covered in completely new material. During the ten years between the two editions, the challenge for applications of nuclear materials has been significantly impacted by world events, public awareness, and technological innovation. Materials play a key role as enablers of new technologies, and we trust that this new edition of Comprehensive Nuclear Materials has captured the key recent developments. Critically reviews the major classes and functions of materials, supporting the selection, assessment, validation and engineering of materials in extreme nuclear environments Comprehensive resource for up-to-date and authoritative information which is not always available elsewhere, even in journals Provides an in-depth treatment of materials modeling and simulation, with a specific focus on nuclear issues Serves as an excellent entry point for students and researchers new to the field


Characterization and Testing of Materials for Nuclear Reactors

Characterization and Testing of Materials for Nuclear Reactors

Author: International Atomic Energy Agency

Publisher:

Published: 2007

Total Pages: 158

ISBN-13:

DOWNLOAD EBOOK

Industrial growth, energy consumption are seen as measures towards economic developments. With increase in industrial development worldwide, the demand of energy is continually on the rise. Today, the energy industry is facing many challenges. Nuclear fission and nuclear fusion are seen as important future energy sources. Development of innovative reactor designs with large efficiency for fuel burn up is one of the needs of fission reactors. The materials resistant to high dose of radiations in fusion reactors is another major challenge. The production of electricity without global warming is an important pressing demand on the energy sector. The demands on quality control of components for nuclear and heavy industry are very stringent. Development of well characterized, high quality materials is therefore essential for safe, efficient and reliable operation of engineering components. The diagnosis of failure of machinery parts comes from the post operational characterization of materials. Various destructive and non-destructive techniques are used for this purpose. Research reactors have played an important role in non-destructive characterization of materials and have contributed to technology development. This publication focuses on characterization of materials for industries in general and nuclear energy sector in particular. The main focus is on research reactor based techniques with some discussion on other allied methods like positron annihilation.--Publisher's description.


Nuclear Fuel Cycle

Nuclear Fuel Cycle

Author: B. S. Tomar

Publisher: Springer Nature

Published: 2023-06-26

Total Pages: 457

ISBN-13: 981990949X

DOWNLOAD EBOOK

The present book describes the various processes involved in different stages of the entire nuclear fuel cycle, which include exploration of uranium, thorium, and other nuclear materials, mining and milling of ores, conversion of the separated nuclear material into nuclear grade, fabrication of different types of nuclear fuels and their physical as well as chemical quality control, thermodynamics of the interaction among fuel and fission products during reactor operation, post irradiation examination, spent fuel reprocessing, radioactive waste management, accounting and control of nuclear materials, and safety aspects involved in handling and transportation of nuclear materials. The book provides the fundamental knowledge to the practicing nuclear scientists and engineers, young researchers, and postgraduate students interested in pursuing a career in nuclear industry in general and those engaged in human resource development in the field of nuclear science and technology in particular. It can also be prescribed as a textbook for a course on nuclear fuel cycle at postgraduate level.