Polynomial and Matrix Computations

Polynomial and Matrix Computations

Author: Dario Bini

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 433

ISBN-13: 1461202655

DOWNLOAD EBOOK

Our Subjects and Objectives. This book is about algebraic and symbolic computation and numerical computing (with matrices and polynomials). It greatly extends the study of these topics presented in the celebrated books of the seventies, [AHU] and [BM] (these topics have been under-represented in [CLR], which is a highly successful extension and updating of [AHU] otherwise). Compared to [AHU] and [BM] our volume adds extensive material on parallel com putations with general matrices and polynomials, on the bit-complexity of arithmetic computations (including some recent techniques of data compres sion and the study of numerical approximation properties of polynomial and matrix algorithms), and on computations with Toeplitz matrices and other dense structured matrices. The latter subject should attract people working in numerous areas of application (in particular, coding, signal processing, control, algebraic computing and partial differential equations). The au thors' teaching experience at the Graduate Center of the City University of New York and at the University of Pisa suggests that the book may serve as a text for advanced graduate students in mathematics and computer science who have some knowledge of algorithm design and wish to enter the exciting area of algebraic and numerical computing. The potential readership may also include algorithm and software designers and researchers specializing in the design and analysis of algorithms, computational complexity, alge braic and symbolic computing, and numerical computation.


Structured Matrices and Polynomials

Structured Matrices and Polynomials

Author: Victor Y. Pan

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 299

ISBN-13: 1461201292

DOWNLOAD EBOOK

This user-friendly, engaging textbook makes the material accessible to graduate students and new researchers who wish to study the rapidly exploding area of computations with structured matrices and polynomials. The book goes beyond research frontiers and, apart from very recent research articles, includes previously unpublished results.


Exploiting Hidden Structure in Matrix Computations: Algorithms and Applications

Exploiting Hidden Structure in Matrix Computations: Algorithms and Applications

Author: Michele Benzi

Publisher: Springer

Published: 2017-01-24

Total Pages: 413

ISBN-13: 3319498878

DOWNLOAD EBOOK

Focusing on special matrices and matrices which are in some sense `near’ to structured matrices, this volume covers a broad range of topics of current interest in numerical linear algebra. Exploitation of these less obvious structural properties can be of great importance in the design of efficient numerical methods, for example algorithms for matrices with low-rank block structure, matrices with decay, and structured tensor computations. Applications range from quantum chemistry to queuing theory. Structured matrices arise frequently in applications. Examples include banded and sparse matrices, Toeplitz-type matrices, and matrices with semi-separable or quasi-separable structure, as well as Hamiltonian and symplectic matrices. The associated literature is enormous, and many efficient algorithms have been developed for solving problems involving such matrices. The text arose from a C.I.M.E. course held in Cetraro (Italy) in June 2015 which aimed to present this fast growing field to young researchers, exploiting the expertise of five leading lecturers with different theoretical and application perspectives.


Algorithms and Theory of Computation Handbook, Volume 1

Algorithms and Theory of Computation Handbook, Volume 1

Author: Mikhail J. Atallah

Publisher: CRC Press

Published: 2009-11-20

Total Pages: 974

ISBN-13: 1584888237

DOWNLOAD EBOOK

Algorithms and Theory of Computation Handbook, Second Edition: General Concepts and Techniques provides an up-to-date compendium of fundamental computer science topics and techniques. It also illustrates how the topics and techniques come together to deliver efficient solutions to important practical problems. Along with updating and revising many


Algorithms and Theory of Computation Handbook - 2 Volume Set

Algorithms and Theory of Computation Handbook - 2 Volume Set

Author: Mikhail J. Atallah

Publisher: CRC Press

Published: 2022-05-29

Total Pages: 1904

ISBN-13: 1439832331

DOWNLOAD EBOOK

Algorithms and Theory of Computation Handbook, Second Edition in a two volume set, provides an up-to-date compendium of fundamental computer science topics and techniques. It also illustrates how the topics and techniques come together to deliver efficient solutions to important practical problems. New to the Second Edition: Along with updating and revising many of the existing chapters, this second edition contains more than 20 new chapters. This edition now covers external memory, parameterized, self-stabilizing, and pricing algorithms as well as the theories of algorithmic coding, privacy and anonymity, databases, computational games, and communication networks. It also discusses computational topology, computational number theory, natural language processing, and grid computing and explores applications in intensity-modulated radiation therapy, voting, DNA research, systems biology, and financial derivatives. This best-selling handbook continues to help computer professionals and engineers find significant information on various algorithmic topics. The expert contributors clearly define the terminology, present basic results and techniques, and offer a number of current references to the in-depth literature. They also provide a glimpse of the major research issues concerning the relevant topics


Numerical Methods for Roots of Polynomials - Part II

Numerical Methods for Roots of Polynomials - Part II

Author: J.M. McNamee

Publisher: Elsevier Inc. Chapters

Published: 2013-07-19

Total Pages: 94

ISBN-13: 0128077050

DOWNLOAD EBOOK

The zeros of a polynomial can be readily recovered from its linear factors. The linear factors can be approximated by first splitting a polynomial numerically into the product of its two nonconstant factors and then recursively splitting every computed nonlinear factor in similar fashion. For both the worst and average case inputs the resulting algorithms solve the polynomial factorization and root-finding problems within fixed sufficiently small error bounds by using nearly optimal arithmetic and Boolean time, that is using nearly optimal numbers of arithmetic and bitwise operations; in the case of a polynomial with integer coefficients and simple roots we can immediately extend factorization to root isolation, that is to computing disjoint covering discs, one for every root on the complex plane. The presented algorithms compute highly accurate approximations to all roots nearly as fast as one reads the input coefficients. Furthermore, our algorithms allow processor efficient parallel acceleration, which enables root-finding, factorization, and root isolation in polylogarithmic arithmetic and Boolean time. The chapter thoroughly covers the design and analysis of these algorithms, including auxiliary techniques of independent interest. At the end we compare the presented polynomial root-finders with alternative ones, in particular with the popular algorithms adopted by users based on supporting empirical information. We also comment on some promising directions to further progress.


Matrix Computations and Semiseparable Matrices

Matrix Computations and Semiseparable Matrices

Author: Raf Vandebril

Publisher: JHU Press

Published: 2008-01-14

Total Pages: 594

ISBN-13: 0801896797

DOWNLOAD EBOOK

In recent years several new classes of matrices have been discovered and their structure exploited to design fast and accurate algorithms. In this new reference work, Raf Vandebril, Marc Van Barel, and Nicola Mastronardi present the first comprehensive overview of the mathematical and numerical properties of the family's newest member: semiseparable matrices. The text is divided into three parts. The first provides some historical background and introduces concepts and definitions concerning structured rank matrices. The second offers some traditional methods for solving systems of equations involving the basic subclasses of these matrices. The third section discusses structured rank matrices in a broader context, presents algorithms for solving higher-order structured rank matrices, and examines hybrid variants such as block quasiseparable matrices. An accessible case study clearly demonstrates the general topic of each new concept discussed. Many of the routines featured are implemented in Matlab and can be downloaded from the Web for further exploration.


Fundamental Problems of Algorithmic Algebra

Fundamental Problems of Algorithmic Algebra

Author: Chee-Keng Yap

Publisher: Oxford University Press on Demand

Published: 2000

Total Pages: 511

ISBN-13: 9780195125160

DOWNLOAD EBOOK

Popular computer algebra systems such as Maple, Macsyma, Mathematica, and REDUCE are now basic tools on most computers. Efficient algorithms for various algebraic operations underlie all these systems. Computer algebra, or algorithmic algebra, studies these algorithms and their properties and represents a rich intersection of theoretical computer science with classical mathematics. Fundamental Problems of Algorithmic Algebra provides a systematic and focused treatment of a collection of core problemsthe computational equivalents of the classical Fundamental Problem of Algebra and its derivatives. Topics covered include the GCD, subresultants, modular techniques, the fundamental theorem of algebra, roots of polynomials, Sturm theory, Gaussian lattice reduction, lattices and polynomial factorization, linear systems, elimination theory, Grobner bases, and more. Features · Presents algorithmic ideas in pseudo-code based on mathematical concepts and can be used with any computer mathematics system · Emphasizes the algorithmic aspects of problems without sacrificing mathematical rigor · Aims to be self-contained in its mathematical development · Ideal for a first course in algorithmic or computer algebra for advanced undergraduates or beginning graduate students