Polynomial Algorithms in Computer Algebra

Polynomial Algorithms in Computer Algebra

Author: Franz Winkler

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 284

ISBN-13: 3709165717

DOWNLOAD EBOOK

For several years now I have been teaching courses in computer algebra at the Universitat Linz, the University of Delaware, and the Universidad de Alcala de Henares. In the summers of 1990 and 1992 I have organized and taught summer schools in computer algebra at the Universitat Linz. Gradually a set of course notes has emerged from these activities. People have asked me for copies of the course notes, and different versions of them have been circulating for a few years. Finally I decided that I should really take the time to write the material up in a coherent way and make a book out of it. Here, now, is the result of this work. Over the years many students have been helpful in improving the quality of the notes, and also several colleagues at Linz and elsewhere have contributed to it. I want to thank them all for their effort, in particular I want to thank B. Buchberger, who taught me the theory of Grabner bases nearly two decades ago, B. F. Caviness and B. D. Saunders, who first stimulated my interest in various problems in computer algebra, G. E. Collins, who showed me how to compute in algebraic domains, and J. R. Sendra, with whom I started to apply computer algebra methods to problems in algebraic geometry. Several colleagues have suggested improvements in earlier versions of this book. However, I want to make it clear that I am responsible for all remaining mistakes.


Computer Algebra and Polynomials

Computer Algebra and Polynomials

Author: Jaime Gutierrez

Publisher: Springer

Published: 2015-01-20

Total Pages: 222

ISBN-13: 3319150812

DOWNLOAD EBOOK

Algebra and number theory have always been counted among the most beautiful mathematical areas with deep proofs and elegant results. However, for a long time they were not considered that important in view of the lack of real-life applications. This has dramatically changed: nowadays we find applications of algebra and number theory frequently in our daily life. This book focuses on the theory and algorithms for polynomials over various coefficient domains such as a finite field or ring. The operations on polynomials in the focus are factorization, composition and decomposition, basis computation for modules, etc. Algorithms for such operations on polynomials have always been a central interest in computer algebra, as it combines formal (the variables) and algebraic or numeric (the coefficients) aspects. The papers presented were selected from the Workshop on Computer Algebra and Polynomials, which was held in Linz at the Johann Radon Institute for Computational and Applied Mathematics (RICAM) during November 25-29, 2013, at the occasion of the Special Semester on Applications of Algebra and Number Theory.


Algorithms for Computer Algebra

Algorithms for Computer Algebra

Author: Keith O. Geddes

Publisher: Springer Science & Business Media

Published: 2007-06-30

Total Pages: 594

ISBN-13: 0585332479

DOWNLOAD EBOOK

Algorithms for Computer Algebra is the first comprehensive textbook to be published on the topic of computational symbolic mathematics. The book first develops the foundational material from modern algebra that is required for subsequent topics. It then presents a thorough development of modern computational algorithms for such problems as multivariate polynomial arithmetic and greatest common divisor calculations, factorization of multivariate polynomials, symbolic solution of linear and polynomial systems of equations, and analytic integration of elementary functions. Numerous examples are integrated into the text as an aid to understanding the mathematical development. The algorithms developed for each topic are presented in a Pascal-like computer language. An extensive set of exercises is presented at the end of each chapter. Algorithms for Computer Algebra is suitable for use as a textbook for a course on algebraic algorithms at the third-year, fourth-year, or graduate level. Although the mathematical development uses concepts from modern algebra, the book is self-contained in the sense that a one-term undergraduate course introducing students to rings and fields is the only prerequisite assumed. The book also serves well as a supplementary textbook for a traditional modern algebra course, by presenting concrete applications to motivate the understanding of the theory of rings and fields.


Computer Algebra and Symbolic Computation

Computer Algebra and Symbolic Computation

Author: Joel S. Cohen

Publisher: CRC Press

Published: 2002-07-19

Total Pages: 323

ISBN-13: 1439863695

DOWNLOAD EBOOK

This book provides a systematic approach for the algorithmic formulation and implementation of mathematical operations in computer algebra programming languages. The viewpoint is that mathematical expressions, represented by expression trees, are the data objects of computer algebra programs, and by using a few primitive operations that analyze and


Effective Polynomial Computation

Effective Polynomial Computation

Author: Richard Zippel

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 364

ISBN-13: 1461531888

DOWNLOAD EBOOK

Effective Polynomial Computation is an introduction to the algorithms of computer algebra. It discusses the basic algorithms for manipulating polynomials including factoring polynomials. These algorithms are discussed from both a theoretical and practical perspective. Those cases where theoretically optimal algorithms are inappropriate are discussed and the practical alternatives are explained. Effective Polynomial Computation provides much of the mathematical motivation of the algorithms discussed to help the reader appreciate the mathematical mechanisms underlying the algorithms, and so that the algorithms will not appear to be constructed out of whole cloth. Preparatory to the discussion of algorithms for polynomials, the first third of this book discusses related issues in elementary number theory. These results are either used in later algorithms (e.g. the discussion of lattices and Diophantine approximation), or analogs of the number theoretic algorithms are used for polynomial problems (e.g. Euclidean algorithm and p-adic numbers). Among the unique features of Effective Polynomial Computation is the detailed material on greatest common divisor and factoring algorithms for sparse multivariate polynomials. In addition, both deterministic and probabilistic algorithms for irreducibility testing of polynomials are discussed.


Algorithmic Algebra

Algorithmic Algebra

Author: Bhubaneswar Mishra

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 427

ISBN-13: 1461243440

DOWNLOAD EBOOK

Algorithmic Algebra studies some of the main algorithmic tools of computer algebra, covering such topics as Gröbner bases, characteristic sets, resultants and semialgebraic sets. The main purpose of the book is to acquaint advanced undergraduate and graduate students in computer science, engineering and mathematics with the algorithmic ideas in computer algebra so that they could do research in computational algebra or understand the algorithms underlying many popular symbolic computational systems: Mathematica, Maple or Axiom, for instance. Also, researchers in robotics, solid modeling, computational geometry and automated theorem proving community may find it useful as symbolic algebraic techniques have begun to play an important role in these areas. The book, while being self-contained, is written at an advanced level and deals with the subject at an appropriate depth. The book is accessible to computer science students with no previous algebraic training. Some mathematical readers, on the other hand, may find it interesting to see how algorithmic constructions have been used to provide fresh proofs for some classical theorems. The book also contains a large number of exercises with solutions to selected exercises, thus making it ideal as a textbook or for self-study.


Computer Algebra

Computer Algebra

Author: James Harold Davenport

Publisher:

Published: 1993

Total Pages: 328

ISBN-13:

DOWNLOAD EBOOK

This book still remains the best introduction to computer algebra, catering to both the interested beginner and the experienced pure mathematician and computer scientist. This updated Second Edition provides a comprehensive review, and contains excellent references to fundamental papers and worked examples. In addition to being a general text on the subject, the book includes an appendix describing the use of one particular algebra system-REDUCE.


Modern Computer Algebra

Modern Computer Algebra

Author: Joachim von zur Gathen

Publisher: Cambridge University Press

Published: 2013-04-25

Total Pages: 811

ISBN-13: 1107039037

DOWNLOAD EBOOK

Now in its third edition, this highly successful textbook is widely regarded as the 'bible of computer algebra'.


Numerical Polynomial Algebra

Numerical Polynomial Algebra

Author: Hans J. Stetter

Publisher: SIAM

Published: 2004-05-01

Total Pages: 475

ISBN-13: 0898715571

DOWNLOAD EBOOK

This book is the first comprehensive treatment of numerical polynomial algebra, an area which so far has received little attention.


Computer Algebra and Symbolic Computation

Computer Algebra and Symbolic Computation

Author: Joel S. Cohen

Publisher: CRC Press

Published: 2003-01-03

Total Pages: 472

ISBN-13: 1439863709

DOWNLOAD EBOOK

Mathematica, Maple, and similar software packages provide programs that carry out sophisticated mathematical operations. Applying the ideas introduced in Computer Algebra and Symbolic Computation: Elementary Algorithms, this book explores the application of algorithms to such methods as automatic simplification, polynomial decomposition, and polyno