A comprehensive and up to date survey of the science and technology of polymeric dispersions. The book discusses the kinetics and mechanisms of polymerization in dispersed media, examines the processes controlling particle morphology, presents both off-line and on-line methods for the characterization of polymer colloids, considers reactor engineering and control, and covers a wide variety of applications, such as latex paint formulations, encapsulation of inorganic particles, reactive latexes, adhesives, paper coating, and biomedical and pharmaceutical applications. Audience: A valuable resource for scientists and engineers, academic and industrial, who are involved in the manufacture or application of polymeric dispersions.
This work offers a comprehensive review of surfactant systems in organic, inorganic, colloidal, surface, and materials chemistry. It provides practical applications to reaction chemistry, organic and inorganic particle formation, synthesis and processing, molecular recognition and surfactant templating. It also allows closer collaboration between synthetic and physical practitioners in developing new materials and devices.
A dispersion is a system of unmixable phases in which one phase is continuous and at least one is finely distributed. Examples are found in many industrial applications, including emulsions, suspensions, foams, and geld. The control of their flow characteristics - rheology - is essential in their preparation, long-term physical stability and application. Filling the need for a practical, up-to-date book connecting the stability/instability of the dispersion to its rheological behavior, this title aids in understanding the principles of rheology and the techniques that can be applied. From the contents: * General Introduction * Interparticle Interactions and Their Combination * Principles of Viscoelastic Behavior * Rheology of Suspensions * Rheology of Emulsions * Rheology of Modifiers, Thickeners, and Gels * Use of Rheological Measurements for Assessment and Prediction of the Long-Term Physical Stability of Formulations (Creaming and Sedimentation)
Dedicated to Dr. Alain Guyot who played an important role in setting up and the development of Polymer Science in Lyon, and on the occasion of his formal retirement, the 4th International Symposium "Polymers in Dispersed Media" took place in April 1999 in Lyon, France. The present two volumes of Macromolecular Symposia contain 83 invited and contributed papers which are classified according to the three main topics of the symposium. Articles in volume 150 deal with "Polymerization in Dispersed Media", whereas volume 151 comprises contributions to "Non-Conventional Dispersion of Polymers", as well as "Properties and Applications of Dispersed Media".
Polymers are an example of “products-by-process”, where the final product properties are mostly determined during manufacture, in the reactor. An understanding of processes occurring in the polymerization reactor is therefore crucial to achieving efficient, consistent, safe and environmentally friendly production of polymeric materials. Polymer Reaction Engineering provides the link between the fundamentals of polymerization kinetics and polymer microstructure achieved in the reactor. Organized according to the type of polymerization, each chapter starts with a description of the main polymers produced by the particular method, their key microstructural features and their applications Polymerization kinetics and its effect on reactor configuration, mass and energy balances and scale-up are covered in detail. The text is illustrated with examples emphasizing general concepts, principles and methodology. Written as an authoritative guide for chemists and chemical engineers in industry and academe, Polymer Reaction Engineering will also be a key reference source for advanced courses in polymer chemistry and technology.
Amidst developments in nanotechnology and successes in catalytic emulsion polymerization of olefins, polymerization in dispersed media is arousing an increasing interest from both practical and fundamental points of view. This text describes ultramodern approaches to synthesis, preparation, characterization, and functionalization of latexes, nanopa
Light scattering is a very powerful method for characterizing the structure of polymers and nanoparticles in solution. As part of the Springer Laboratory series, this book provides a simple-to-read and illustrative textbook probing the seemingly very complicated topic of light scattering from polymers and nanoparticles in dilute solution, and goes further to cover some of the latest technical developments in experimental light scattering.
This book contains the papers presented at a meeting sponsored by the Colloid and Interface Science Group of the Faraday Division, Royal Society of Chemistry, which was held at Wills Hall, University of Bristol from the 14th - 16th April 1997. The pur pose of the meeting, which was entitled Colloidal Dispersions, was to discuss the subject of concentrated colloidal systems including, dispersions, emulsions and powders, in order to emphasize recent advances in experimental and theoretical understanding of these systems and how these advances could be applied to practical utitisation in the wide range of industries which are involved with colloidal systems. The papers presented at the meeting were given by the principal participants in a 5 year project on Colloid Technology, which started on the 1st August 1992, and was funded by the Department of Trade and Industry (DTI) of the U.K. and a consortium of industries which was composed of ICI, Schlumberger, Unilever and Zeneca. The academic centres involved were, the Universities of Bristol, Cambridge, Edinburgh and Imperial College, London. Each of the papers published in this volume formed the focus for a discussion on that topic so that each subject was discussed in so me depth by the participants. J ean Proctor and Meg Staff have been tremendously helpful as secretaries at Bristol and Cambridge respectively throughout the project. Also, their help with the various meetings and with the production of this volume was invaluable. We thank them most warmly for their very able assistance.
The term latex covers emulsion polymers, polymer dispersions and polymer colloids. This review report provides a general overview of the emulsion polymerisation processes and explains how the resulting latices are used in industrial applications. The classes of emulsion polymers are surveyed and the commercial technologies and potential future uses discussed. An additional indexed section containing several hundred abstracts from the Polymer Library gives useful references for further reading.
Nanocomposite Structures and Dispersions summarizes the fundamentals and mechanistic approaches in preparation and characterization of colloidal nanoparticles and dispersions, providing the readers a systematic and coherent picture of the field. The book serves as an introduction to the interesting field of nanoscience based on polymer and metal colloidal nanoparticles, and also presents the basic knowledge of polymer colloids preparation. It places a special emphasis on polymer, inorganic and metal nanomaterials classified as nanoparticles, nanocrystals, nanorods, nanotubes, nanobelts, etc. deals with the chemistry of the reaction approaches by which polymer and metal particles are synthesized. The book explores both organic (synthetic and natural) and inorganic materials, as well as their hybrids. It describes in detail terms, definitions, theories, experiments, and techniques dealing with synthesis of polymer and metal particles. It also discusses a variety of synthetic approaches including emulsion, miniemulsion and microemulsion approaches, homogeneous and heterogeneous nucleation approaches under mild and high temperatures. There is also a chapter on modification and passivation of colloidal particles. This book would be of interest to chemical engineers, polymer chemists, organic chemists, colloid chemists, materials scientists and nanotechnologists. Although the text discusses nanoscience and nanotechnology from the viewpoint of a chemist, it would also appeal to those just entering the field and experts seeking information in other sub-fields. - Serves as a general introduction for those just entering the field and experts seeking information in other sub-fields - Variety of synthetic approaches is described including emulsion, miniemulsion and microemulsion approaches, hogeneous and heterogeneous nucleation approaches under mild and high temperatures - Focused on both the organic (synthetic and natural) and inorganic materials, and their hybrids