A dozen papers from a June 1992 symposium in Louisville, Kentucky review the current use of organic polymers dispersed in water and formulated to add to portland cement. One sets out the status of ASTM's forthcoming specification and test methods. Others discuss such aspects as solid grade acrylic c
Mortar and concrete made with portland cement has been a popular construction material in the world for the past 170 years or more. However, cement mortar and concrete have some disadvantages such as delayed hardening, low tensile strength, large drying shrinkage and low chemical resistance. To reduce these disadvantages, polymers have been utilized as an additive.Polymer-modified or polymer cement mortar (PCM) and concrete (PCC) are the materials which are made by partially replacing the cement hydrate binders of conventional cement mortar or concrete, with polymers. This book deals with the principles of polymer modification for cement composites, the process technology, properties and applications of the polymer-modified mortar and concrete, and special polymer-modified systems such as M DF cement, antiwashout underwater concrete, polymer-ferrocement, and artificial I wood.The polymeric admixtures or cement modifiers include latexes or emulsions, redispersible polymer powders, water-soluble polymers, liquid resins and monomers.This book describes the current knowledge and information of polymer-modified mortars and concretes, and discusses or reviews the following items in detail:1. Principles of polymer modification for cement composites.2. Process technology of polymer-modified mortars and concretes.3. Properties of polymer-modified mortars and concretes.4. Applications of polymer-modified mortars and concretes.5. Special polymer-modified systems such as MDF cements, antiwashout underwater concretes, polymer-ferrocements, and artificial woods.
Polymeric products are used widely in the construction industry, because they offer a range of desirable performance properties not available from traditional materials. Development of these products continues in a number of major research and development programmes within the construction materials sector, aimed at improving the performance, durability and applicational properties of these materials. It seems certain that their use will increase as their overall performance is developed and as the industry becomes more familiar with the techniques required to apply these materials and the benefits they offer. The purpose of this book is to familiarise the reader with the range of thermosetting polymeric materials available for construction applications, and to provide sound information on the properties and applications of these important materials. Professional engineers involved in the specification, application and testing of these materials will find this book a compact, authoritative and comprehensive source of information on these materials. Chemists and technologists involved in developing new or improved formulations will find in this book much to inform their work, particularly in the important area of applicational properties.
Since the publication of the first edition ten years ago, significant developments have occurred in the use of admixtures in concrete. Eight new chapters and a full update of the preceding ten chapters bring this book up to date; reflecting the relative advances made in the science and technology of different groups of admixtures. The increased role and development of admixtures in concrete technology is evidenced by a number of conferences, publications, and novel admixtures available in the market place. These developments in the field caused the modification of many chapters in the first edition in order to reflect the advances. Although individual chapters refer to standards and specifications of admixtures, those only interested in the standards or techniques used in investigating admixtures will find the second chapter (Research Technologies, Standards, and Specifications) useful. Admixtures are not as inert as may be presumed. They may chemically interact with the constituents of concrete and affect the properties of the fresh and hardened concrete and its durability. The third chapter deals with these aspects. It was important to devote a chapter to recent attempts in developing new admixtures.
This collection contains 43 papers on the use of cement and concrete presented at of an Engineering Foundation Conference, held in Durham, New Hampshire, July 24-29, 1994.
This chapter describes the use of different polymers that can be added to fresh or hardened hydraulic cement, or used to replace the cement. The introduction of polymers can modify the characteristics and properties of concrete, and protect or repair concrete elements.
Introductory technical guidance for civil engineers, structural engineers and construction managers interested in engineering design and construction of concrete structures. Here is what is discussed: 1. CONSTRUCTION PLANNING 2. CONSTRUCTION METHODS 3. MATERIALS SELECTION 4. MIXTURE PROPORTIONING 5. ARCHITECTURAL CONCRETE 6. SHOTCRETE 7. VERIFICATION AND TESTING 8. CONCRETE PAVEMENTS 9. SLABS ON GRADE 10. SPECIAL CONCRETES 11. ALKALI/SILICATE AGGREGATE REACTIONS 12. EVALUATION OF CONCRETE STRUCTURES 13. CONCRETE STRUCTURES REPAIR 14. REINFORCED CONCRETE HYDRAULIC STRUCTURES