This excellent volume will serve as an indispensable reference and source book for process design, tool and production engineers in composite manufacturing. It provides the reader with a comprehensive treatment of the theory of machining as it applies to fiber reinforced polymer composites. It covers the latest technical advances in the area of machining and tooling, and discusses the applications of fiber reinforced polymer composites in the aircraft and automotive industries.
The first systematic reference on the topic with an emphasis on the characteristics and dimension of the reinforcement. This first of three volumes, authored by leading researchers in the field from academia, government, industry, as well as private research institutions around the globe, focuses on macro and micro composites. Clearly divided into three sections, the first offers an introduction to polymer composites, discussing the state of the art, new challenges, and opportunities of various polymer composite systems, as well as preparation and manufacturing techniques. The second part looks at macro systems, with an emphasis on fiber reinforced polymer composites, textile composites, and polymer hybrid composites. Likewise, the final section deals with micro systems, including micro particle reinforced polymer composites, the synthesis, surface modification and characterization of micro particulate fillers and flakes as well as filled polymer micro composites, plus applications and the recovery, recycling and life cycle analysis of synthetic polymeric composites.
Given such properties as low density and high strength, polymer matrix composites have become a widely used material in the aerospace and other industries. Polymer matrix composites and technology provides a helpful overview of these materials, their processing and performance.After an introductory chapter, part one reviews the main reinforcement and matrix materials used as well as the nature of the interface between them. Part two discusses forming and molding technologies for polymer matrix composites. The final part of the book covers key aspects of performance, including tensile, compression, shear and bending properties as well as impact, fatigue and creep behaviour.Polymer matrix composites and technology provides both students and those in industry with a valuable introduction to and overview of this important class of materials. - Provides a helpful overview of these materials, their processing and performance incorporating naming and classification of composite materials - Reviews the main reinforcement and matrix materials used as well as the nature of the interface between them including damage mechanisms - Discusses forming and molding technologies for polymer matrix composites outlining various techniques and technologies
Polymer Composites with Functional Nanoparticles: Synthesis, Properties, and Applications reviews the latest research in the area of polymer nanocomposites and functionalized nanoparticles, providing an introduction for those new to the field, and supporting further research and development. The book helps researchers and practitioners better understand the key role of nanoparticle functionalization for improving the compatibility of inorganic metallic nanomaterials with organic polymers, and for the fabrication of nanostructured materials with special properties. A range of nanoparticles, such as carbon nanotubes are covered, along with descriptions of the methods of functionalization to support better compatibility with polymer matrices. The book also discusses the various applications of this technology, including uses in electronics and the medical and energy industries. - Summarizes the latest research in functionalized nanoparticles for modification of polymer matrices, providing a valuable platform for further research - Includes functionalization of a range of nanoparticles for incorporation into nanocomposites, including carbon nanotubes, graphene, gold and silver, silica and clay - Provides detailed coverage of application areas, including energy, electronics, biomedical applications, and end-of-life considerations
The potential application areas for polymer composites are vast. While techniques and methodologies for composites design are relatively well established, the knowledge and understanding of post-design issues lag far behind. This leads to designs and eventually composites with disappointing properties and unnecessarily high cost, thus impeding a wider industrial acceptance of polymer composites. Manufacturing of Polymer Composites completely covers pre- and post-design issues. While the book enables students to become fully comfortable with composites as a possible materials choice, it also provides sufficient knowledge about manufacturing-related issues to permit them to avoid common pitfalls and unmanufacturable designs. The book is a fully comprehensive text covering all commercially significant materials and manufacturing techniques while at the same time discussing areas of research and development that are nearing commercial reality.
Natural Fiber-Reinforced Biodegradable and Bioresorbable Polymer Composites focuses on key areas of fundamental research and applications of biocomposites. Several key elements that affect the usage of these composites in real-life applications are discussed. There will be a comprehensive review on the different kinds of biocomposites at the beginning of the book, then the different types of natural fibers, bio-polymers, and green nanoparticle biocomposites are discussed as well as their potential for future development and use in engineering biomedical and domestic products. Recently mankind has realized that unless the environment is protected, he himself will be threatened by the over consumption of natural resources as well as a substantial reduction in the amount of fresh air produced in the world. Conservation of forests and the optimal utilization of agricultural and other renewable resources like solar, wind, and tidal energy, have become important topics worldwide. With such concern, the use of renewable resources—such as plant and animal-based, fiber-reinforced polymeric composites—are now becoming an important design criterion for designing and manufacturing components for a broad range of different industrial products. Research on biodegradable polymeric composites can contribute, to some extent, to a much greener and safer environment. For example, in the biomedical and bioengineering fields, the use of natural fiber mixed with biodegradable and bioresorbable polymers can produce joint and bone fixtures to alleviate pain in patients. - Includes comprehensive information about the sources, properties, and biodegradability of natural fibers - Discusses failure mechanisms and modeling of natural fibers composites - Analyzes the effectiveness of using natural materials for enhancing mechanical, thermal, and biodegradable properties
Lignin in Polymer Composites presents the latest information on lignin, a natural polymer derived from renewable resources that has great potential as a reinforcement material in composites because it is non-toxic, inexpensive, available in large amounts, and is starting to be deployed in various materials applications due to its advantages over more traditional oil-based materials. This book reviews the state-of-the-art on the topic and their applications to composites, including thermoplastic, thermosets, rubber, foams, bioplastics, nanocomposites, and lignin-based carbon fiber composites. In addition, the book covers critical assessments on the economics of lignin, including a cost-performance analysis that discusses its strengths and weaknesses as a reinforcement material. Finally, the huge potential applications of lignin in industry are explored with respect to its low cost, recyclable properties, and fully biodegradable composites, and the way they apply to the automotive, construction, and packaging industries. - Reviews the state-of-the-art on the topic and their applications to composites, including thermoplastic, thermosets, rubber, foams, bioplastics, nanocomposites, and lignin-based carbon fiber composites - Presents the essential processing and properties information for engineers and materials scientists, enabling the use of lignin in composites - Provides critical insight into the applications and future trends of lignin-based composites, including advantages, shortcomings, and economics - Includes a thorough coverage of extraction, modification, processing, and applications of the material
Tribology of Polymer Composites: Characterization, Properties, and Applications provides an exhaustive overview of the latest research, trends, applications and future directions of the tribology of polymer composites. Covering novel methods for the synthesis of polymer composites and their properties, the book starts by reviewing the fabrication techniques, wear and frictional properties of polymer composite materials. From there, it features chapters looking at the tribological behavior and properties of specific polymer composite materials such as synthetic fiber-reinforced, cellulose fiber-reinforced, wood fiber, synthetic fiber, mineral fiber-reinforced, and thermosetting composites. Final chapters cover the tribology of polymer nanocomposites and particulate polymer composites and their metal coatings. Applied examples spanning a wide range of industries are emphasized in each chapter. - Demonstrates the potential of polymer composites and their applications - Covers novel methods for the synthesis of polymer composites and their properties - Reviews the fabrication techniques, wear and frictional properties of polymer composite materials
Biodegradable and Biocompatible Polymer Composites: Processing, Properties and Applications begins by discussing the current state-of-the-art, new challenges and opportunities for various biodegradable and biocompatible polymer composite systems. Interfacial characterization of composites and the structure-property relationships in various composite systems are explained in detail via a theoretical model. Processing techniques for various macro and nanocomposite systems and the influence of processing parameters on properties of the composite are also reviewed in detail. The characterization of microstructure, elastic, visco-elastic, static and dynamic mechanical, thermal, rheological, optical, and electrical properties are highlighted, as are a broad range of applications. The book is a useful reference resource for both researchers and engineers working in composites materials science, biotechnology and nanotechnology, and is also useful for students attending chemistry, physics, and materials science and engineering courses. - Presents recent outcomes and highlights the going importance of biodegradable and biocompatible polymer composites and their impact on the environment - Analyzes all the main processing techniques, characterization and applications of biodegradable composites - Written by leading international experts working in the field of biodegradable and biocompatible polymer composites - Covers a broad range of application fields, including medical and pharmaceutical, agricultural, packaging and transport