Plastic Deformation of Ceramics

Plastic Deformation of Ceramics

Author: R.C. Bradt

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 661

ISBN-13: 1489914412

DOWNLOAD EBOOK

This proceedings volume, "Plastic Deformation of Ceramics," constitutes the papers of an international symposium held at Snowbird, Utah from August 7-12, 1994. It was attended by nearly 100 scientists and engineers from more than a dozen countries representing academia, national laboratories, and industry. Two previous conferences on this topic were held at The Pennsylvania State University in 1974 and 1983. Therefore, the last major international conference focusing on the deformation of ceramic materials was held more than a decade ago. Since the early 1980s, ceramic materials have progressed through an evolutionary period of development and advancement. They are now under consideration for applications in engineering structures. The contents of the previous conferences indicate that considerable effort was directed towards a basic understanding of deformation processes in covalently bonded or simple oxide ceramics. However, now, more than a decade later, the focus has completely shifted. In particular, the drive for more efficient heat engines has resulted in the development of silicon-based ceramics and composite ceramics. The discovery of high-temperature cupric oxide-based superconductors has created a plethora of interesting perovskite-Iike structured ceramics. Additionally, nanophase ceramics, ceramic thin films, and various forms of toughened ceramics have potential applications and, hence, their deformation has been investigated. Finally, new and exciting areas of research have attracted interest since 1983, including fatigue, nanoindentation techniques, and superplasticity.


Ceramic Materials

Ceramic Materials

Author: C. Barry Carter

Publisher: Springer Science & Business Media

Published: 2007-10-23

Total Pages: 727

ISBN-13: 0387462716

DOWNLOAD EBOOK

Ceramic Materials: Science and Engineering is an up-to-date treatment of ceramic science, engineering, and applications in a single, integrated text. Building on a foundation of crystal structures, phase equilibria, defects and the mechanical properties of ceramic materials, students are shown how these materials are processed for a broad diversity of applications in today's society. Concepts such as how and why ions move, how ceramics interact with light and magnetic fields, and how they respond to temperature changes are discussed in the context of their applications. References to the art and history of ceramics are included throughout the text. The text concludes with discussions of ceramics in biology and medicine, ceramics as gemstones and the role of ceramics in the interplay between industry and the environment. Extensively illustrated, the text also includes questions for the student and recommendations for additional reading. KEY FEATURES: Combines the treatment of bioceramics, furnaces, glass, optics, pores, gemstones, and point defects in a single text Provides abundant examples and illustrations relating theory to practical applications Suitable for advanced undergraduate and graduate teaching and as a reference for researchers in materials science Written by established and successful teachers and authors with experience in both research and industry


Mechanical Properties of Ceramics

Mechanical Properties of Ceramics

Author: John B. Wachtman

Publisher: John Wiley & Sons

Published: 2009-08-13

Total Pages: 496

ISBN-13: 9780470451502

DOWNLOAD EBOOK

A Comprehensive and Self-Contained Treatment of the Theory and Practical Applications of Ceramic Materials When failure occurs in ceramic materials, it is often catastrophic, instantaneous, and total. Now in its Second Edition, this important book arms readers with a thorough and accurate understanding of the causes of these failures and how to design ceramics for failure avoidance. It systematically covers: Stress and strain Types of mechanical behavior Strength of defect-free solids Linear elastic fracture mechanics Measurements of elasticity, strength, and fracture toughness Subcritical crack propagation Toughening mechanisms in ceramics Effects of microstructure on toughness and strength Cyclic fatigue of ceramics Thermal stress and thermal shock in ceramics Fractography Dislocation and plastic deformation in ceramics Creep and superplasticity of ceramics Creep rupture at high temperatures and safe life design Hardness and wear And more While maintaining the first edition's reputation for being an indispensable professional resource, this new edition has been updated with sketches, explanations, figures, tables, summaries, and problem sets to make it more student-friendly as a textbook in undergraduate and graduate courses on the mechanical properties of ceramics.


Ceramics

Ceramics

Author: Dietrich Munz

Publisher: Springer Science & Business Media

Published: 2013-03-07

Total Pages: 302

ISBN-13: 3642584071

DOWNLOAD EBOOK

The book gives a description of the failure phenomena of ceramic materials under mechanical loading, the methods to determine their properties, and the principles for material selection. The book presents fracture mechanical and statistical principles and their application to describe the scatter of strength and lifetime, while special chapters are devoted to creep behaviour, multiaxial failure criteria and thermal shock behaviour. XXXXXXX Neuer Text Describing how ceramic materials fracture and fail under mechanical loading, this book provides methods for determining the properties of ceramics, and gives criteria for selecting ceramic materials for particular applications. It also examines the fracture-mechanical and statistical principles and their use in understanding the strength and durability of ceramics. Special chapters are devoted to creep behavior, criteria for multiaxial failure, and behavior under thermal shock. Readers will gain insight into the design of reliable ceramic components.


Handbook of Ceramics Grinding and Polishing

Handbook of Ceramics Grinding and Polishing

Author: Ioan D. Marinescu

Publisher: William Andrew

Published: 2015-11-19

Total Pages: 501

ISBN-13: 1455778591

DOWNLOAD EBOOK

Handbook of Ceramics Grinding and Polishing meets the growing need in manufacturing industries for a clear understanding of the latest techniques in ceramics processing. The properties of ceramics make them very useful as components—they withstand high temperatures and are durable, resistant to wear, chemical degradation, and light. In recent years the use of ceramics has been expanding, with applications in most industry sectors that use machined parts, especially where corrosion-resistance is required, and in high temperature environments. However, they are challenging to produce and their use in high-precision manufacturing often requires adjustments to be made at the micro and nano scale. This book helps ceramics component producers to do cost-effective, highly precise machining. It provides a thorough grounding in the fundamentals of ceramics—their properties and characteristics—and of the abrasive processes used to manipulate their final shape as well as the test procedures vital for success. The second edition has been updated throughout, with the latest developments in technologies, techniques, and materials. The practical nature of the book has also been enhanced; numerous case studies illustrating how manufacturing (machining) problems have been handled are complemented by a highly practical new chapter on the selection and efficient use of machine tools. - Provides readers with experience-based insights into complex and expensive processes, leading to improved quality control, lower failure rates, and cost savings - Covers the fundamentals of ceramics side-by-side with processing issues and machinery selection, making this book an invaluable guide for downstream sectors evaluating the use of ceramics, as well as those involved in the manufacturing of structural ceramics - Numerous case studies from a wide range of applications (automotive, aerospace, electronics, medical devices)


Mechanical Properties of Ceramics

Mechanical Properties of Ceramics

Author: Joshua Pelleg

Publisher: Springer Science & Business

Published: 2014-04-22

Total Pages: 782

ISBN-13: 3319044923

DOWNLOAD EBOOK

This book discusses the mechanical properties of ceramics and aims to provide both a solid background for undergraduate students, as well as serving as a text to bring practicing engineers up to date with the latest developments in this topic so they can use and apply these to their actual engineering work. Generally, ceramics are made by moistening a mixture of clays, casting it into desired shapes and then firing it to a high temperature, a process known as 'vitrification'. The relatively late development of metallurgy was contingent on the availability of ceramics and the know-how to mold them into the appropriate forms. Because of the characteristics of ceramics, they offer great advantages over metals in specific applications in which hardness, wear resistance and chemical stability at high temperatures are essential. Clearly, modern ceramics manufacturing has come a long way from the early clay-processing fabrication method, and the last two decades have seen the development of sophisticated techniques to produce a large variety of ceramic material. The chapters of this volume are ordered to help students with their laboratory experiments and guide their observations in parallel with lectures based on the current text. Thus, the first chapter is devoted to mechanical testing. A chapter of ductile and superplastic ceramic is added to emphasize their role in modern ceramics (chapter 2). These are followed by the theoretical basis of the subject. Various aspects of the mechanical properties are discussed in the following chapters, among them, strengthening mechanisms, time dependent and cyclic deformation of ceramics. Many practical illustrations are provided representing various observations encountered in actual ceramic-structures of particularly technical significance. A comprehensive list of references at the end of each chapter is included in this textbook to provide a broad basis for further studying the subject. The work also contains a unique chapter on a topic not discussed in other textbooks on ceramics concerning nanosized ceramics. This work will also be useful as a reference for materials scientists, not only to those who specialize in ceramics.


Dislocation Dynamics During Plastic Deformation

Dislocation Dynamics During Plastic Deformation

Author: Ulrich Messerschmidt

Publisher: Springer Science & Business Media

Published: 2010-04-19

Total Pages: 509

ISBN-13: 3642031773

DOWNLOAD EBOOK

Along with numerous illustrative examples, this text provides an overview of the dynamic behavior of dislocations and its relation to plastic deformation. It introduces the general properties of dislocations and treats the dislocation dynamics in some detail.


Creep of Crystals

Creep of Crystals

Author: Jean-Paul Poirier

Publisher: Cambridge University Press

Published: 1985-02-28

Total Pages: 280

ISBN-13: 9780521278515

DOWNLOAD EBOOK

This textbook describes the physics of the plastic deformation of solids at high temperatures. It is directed at geologists or geophysicists interested in the high-temperature behaviour of crystals who wish to become acquainted with the methods of materials science in so far as they are useful to earth scientists. It explains the most important models and recent experimental results without losing the reader in the primary literature of materials science. In turn the book deals with the essential solid-state physics; thermodynamics and hydrostatics of creep; creep models and their applications in the geological sciences; diffusion creep; superplastic deformation and deformation enhanced by phase transformations. Five concluding chapters give experimental results for metals, ceramics and minerals. There are extensive bibliographies to aid further study.


Mechanical Behaviour of Ceramics

Mechanical Behaviour of Ceramics

Author: R. W. Davidge

Publisher: CUP Archive

Published: 1979-03-08

Total Pages: 186

ISBN-13: 9780521219150

DOWNLOAD EBOOK

This 1979 book presents the scientific foundations of mechanical behaviour and demonstrates how these can be used in engineering situations in relation to ceramics.


Fabrication of Heat-Resistant and Plastic-Formable Silicon Nitride

Fabrication of Heat-Resistant and Plastic-Formable Silicon Nitride

Author: Toshiyuki Nishimura

Publisher: Springer

Published: 2015-07-23

Total Pages: 53

ISBN-13: 4431553843

DOWNLOAD EBOOK

In this book, improvements in the heat resistance of silicon nitride (Si3N4) ceramics using grain boundary control and in plasticity at high temperatures using grain size control in order to reduce the cost of shaping Si3N4 are described. The heat resistance of Si3N4 is improved by mixing a slight amount of sintering additive as an impurity into the original material powder. The author presents his findings on the high heat resistance of Si3N4. The author also develops a new fabrication method for Si3N4 nano-ceramics that produces high plastic formability. The method developed offers two improved points in grinding and sintering processes. The author found that the plastic formability of Si3N4 nanoceramics is dependent on load stress; the results of his research are detailed in this book.