In this volume, the authors provide an excellent overview of how far the plant viral vector field has come. The discipline is no longer exclusively in the domain of academics—there is a small, but growing number of small biotechnology companies that exploit plant viruses as the platform for commercial innovation in crop improvement, industrial product manufacturing, and human and veterinary health care.
Although nematodes had long been suspected as vectors of soil borne plant diseases, unequivocal proof of their implication was not forthcoming until 1958 when Professor William Hewitt and his colleagues in California demonstrated experimentally that Xiphinema ~ was the vector of grapevine fanleaf virus. This opened up a new and exciting field in plant pathology and discoveries quickly followed of other nematode species associated with soil-borne diseases of many different crops and in several countries. After the initial enthusiasm of discovering new vectors and new viruses there followed a period of consolidation in which research workers sought answers to tantalising questions about the location of the virus within the nematode, the factors governing the close speci ficity between virus and vector; and more mundane but equally important and compelling questions about life cycles, geographical distribution, host relations, morphology and taxonomy. No other group of nematodes has attracted such a concentrated effort involv ing many different scientific specialisations and yielding so much progress in a relatively short time. The NATO Advanced Study Institute held at Riva dei Tessali, Italy, during 19 May to 2 June, 1974, provided the forum for a critical discussion of all aspects of biology of virus vector nema todes.
The seminal text Plant Virology is now in its fifth edition. It has been 10 years since the publication of the fourth edition, during which there has been an explosion of conceptual and factual advances. The fifth edition of Plant Virology updates and revises many details of the previous edition while retaining the important earlier results that constitute the field's conceptual foundation. Revamped art, along with fully updated references and increased focus on molecular biology, transgenic resistance, aphid transmission, and new, cutting-edge topics, bring the volume up to date and maintain its value as an essential reference for researchers and students in the field. - Thumbnail sketches of each genera and family groups - Genome maps of all genera for which they are known - Genetic engineered resistance strategies for virus disease control - Latest understanding of virus interactions with plants, including gene silencing - Interactions between viruses and insect, fungal, and nematode vectors - Contains over 300 full-color illustrations
Plant viruses cause many of the most important diseases threatening crops worldwide. Over the last quarter of a century, an increasing number of plant viruses have emerged in various parts of the world, especially in the tropics and subtropics. As is generally observed for plant viruses, most of the emerging viruses are transmitted horizontally by biological vectors, mainly insects. Reverse genetics using infectious clones--available for many plant viruses--has been used for identification of viral determinants involved in virus-host and virus-vector interactions. Although many studies have identified a number of factors involved in disease development and transmission, the precise mechanisms are unknown for most of the virus-plant-vector combinations. In most cases, the diverse outcomes resulting from virus-virus interactions are poorly understood. Although significant advances have been made towards understand the mechanisms involved in plant resistance to viruses, we are far from being able to apply this knowledge to protect cultivated plants from the all viral threats.The aim of this Special Issue was to provide a platform for researchers interested in plant virology to share their recent results. To achieve this, we invited the plant virology community to submit research articles, short communications and reviews related to the various aspects of plant virology: ecology, virus-plant host interactions, virus-vector interactions, virus-virus interactions, and control strategies. This issue contains some of the best current research in plant virology.
Applied Plant Virology: Advances, Detection, and Antiviral Strategies provides an overview on recent developments and applications in the field of plant virology. The book begins with an introduction to important advances in plant virology, but then covers topics including techniques for assay detection and the diagnosis of plant viruses, the purification, isolation and characterization of plant viruses, the architecture of plant viruses, the replication of plant viruses, the physiology of virus-infected hosts, vectors of plant viruses, and the nomenclature and classification of plants. The book also discusses defense strategies by utilizing antiviral agents and management strategies of virus and viroid diseases. With contributions from an international collection of experts, this book presents a practical resource for plant virologists, plant pathologists, horticulturalists, agronomists, biotechnologists, academics and researchers interested in up-to-date technologies and information that advance the field of plant virology. - Covers the detection, control and management of plant viruses - Discusses antiviral strategies, along with mechanisms of systemic induced resistance to enhance the defense of plants against viruses - Provides contributory chapters from expert plant virologists from different parts of the world
Several billion people are at daily risk of life threatening vector-borne diseases such as malaria, trypanosomiasis and dengue. This volume describes the way in which the causal pathogens of such diseases interact with the vectors that transmit them. It details the elegant biological adaptations that have enabled pathogens to live with their vectors and, in some circumstances, to control them. This knowledge has led to novel preventative strategies in the form of antibiotics and new vaccines which are targeted not at the pathogen itself but at its specific vector.
Gene Therapy for Viral Infections provides a comprehensive review of the broader field of nucleic acid and its use in treating viral infections. The text bridges the gap between basic science and important clinical applications of the technology, providing a systematic, integrated review of the advances in nucleic acid-based antiviral drugs and the potential advantages of new technologies over current treatment options. Coverage begins with the fundamentals, exploring varying topics, including harnessing RNAi to silence viral gene expression, antiviral gene editing, viral gene therapy vectors, and non-viral vectors. Subsequent sections include detailed coverage of the developing use of gene therapy for the treatment of specific infections, the principles of rational design of antivirals, and the hurdles that currently face the further advancement of gene therapy technology. - Provides coverage of gene therapy for a variety of infections, including HBV, HCV, HIV, hemorrhagic fever viruses, and respiratory and other viral infections - Bridges the gap between the basic science and the important medical applications of this technology - Features a broad approach to the topic, including an essential overview and the applications of gene therapy, synthetic RNA, and other antiviral strategies that involve nucleic acid engineering - Presents perspectives on the future use of nucleic acids as a novel class of antiviral drugs - Arms the reader with the cutting-edge information needed to stay abreast of this developing field
Topics covered in this book include RNA silencing and its suppression in plant virus infection, virus replication mechanisms, the association of cellular membranes with virus replication and movement, plant genetic resistance to viruses, viral cell-to-cell spread, long distance movement in plants, virus induced ER stress, virus diversity and evolution, virus-vector interactions, cross protection, geminiviruses, negative strand RNA viruses, viroids, and the diagnosis of plant viral diseases using next generation sequencing. This book was anticipated to help plant pathologists, scholars, professors, teachers and advanced students in the field with a comprehensive state-of-the-art knowledge of the subject.
This book provides a comprehensive look at the field of plant virus evolution. It is the first book ever published on the topic. Individual chapters, written by experts in the field, cover plant virus ecology, emerging viruses, plant viruses that integrate into the host genome, population biology, evolutionary mechanisms and appropriate methods for analysis. It covers RNA viruses, DNA viruses, pararetroviruses and viroids, and presents a number of thought-provoking ideas.
Stressing the key role vectors play spread of virus diseases, this volume represents the priorities in practical plant virus research and ways in which their control or management should be sought through an understanding of the practical and environmental aspects of the interactions of viruses with their vectors and their environment. It provides