Plant Breeding from Laboratories to Fields

Plant Breeding from Laboratories to Fields

Author: Sven Bode Andersen

Publisher: BoD – Books on Demand

Published: 2013-05-22

Total Pages: 302

ISBN-13: 953511090X

DOWNLOAD EBOOK

Breeding of crop plants to make them more adapted to human agricultural systems has been on-going during domestication the last 10 000 years. However, only recently with the invention of the Mendelian principles of genetics and the subsequent development of quantitative genetics during the twentieth century has such genetic crop improvement become based on a general theory. During the last 50 years plant breeding has entered a molecular era based on molecular tools to analyse DNA, RNA and proteins and associate such molecular results with plant phenotype. These marker trait associations develop fast to enable more efficient breeding. However, they still leave a major part of breeding to be performed through selection of phenotypes using quantitative genetic tools. The ten chapters of this book illustrate this development.


Biotechnologies for Plant Mutation Breeding

Biotechnologies for Plant Mutation Breeding

Author: Joanna Jankowicz-Cieslak

Publisher: Springer

Published: 2016-12-08

Total Pages: 343

ISBN-13: 3319450212

DOWNLOAD EBOOK

This book is open access under a CC BY-NC 2.5 license. This book offers 19 detailed protocols on the use of induced mutations in crop breeding and functional genomics studies, which cover topics including chemical and physical mutagenesis, phenotypic screening methods, traditional TILLING and TILLING by sequencing, doubled haploidy, targeted genome editing, and low-cost methods for the molecular characterization of mutant plants that are suitable for laboratories in developing countries. The collection of protocols equips users with the techniques they need in order to start a program on mutation breeding or functional genomics using both forward and reverse-genetic approaches. Methods are provided for seed and vegetatively propagated crops (e.g. banana, barley, cassava, jatropha, rice) and can be adapted for use in other species.


Safety of Genetically Engineered Foods

Safety of Genetically Engineered Foods

Author: National Research Council

Publisher: National Academies Press

Published: 2004-07-08

Total Pages: 254

ISBN-13: 0309166152

DOWNLOAD EBOOK

Assists policymakers in evaluating the appropriate scientific methods for detecting unintended changes in food and assessing the potential for adverse health effects from genetically modified products. In this book, the committee recommended that greater scrutiny should be given to foods containing new compounds or unusual amounts of naturally occurring substances, regardless of the method used to create them. The book offers a framework to guide federal agencies in selecting the route of safety assessment. It identifies and recommends several pre- and post-market approaches to guide the assessment of unintended compositional changes that could result from genetically modified foods and research avenues to fill the knowledge gaps.


Manual on MUTATION BREEDING THIRD EDITION

Manual on MUTATION BREEDING THIRD EDITION

Author: Food and Agriculture Organization of the United Nations

Publisher: Food & Agriculture Org.

Published: 2018-10-09

Total Pages: 319

ISBN-13: 9251305269

DOWNLOAD EBOOK

This paper provides guidelines for new high-throughput screening methods – both phenotypic and genotypic – to enable the detection of rare mutant traits, and reviews techniques for increasing the efficiency of crop mutation breeding.


Smart Plant Breeding for Field Crops in Post-genomics Era

Smart Plant Breeding for Field Crops in Post-genomics Era

Author: Devender Sharma

Publisher: Springer Nature

Published: 2023-04-28

Total Pages: 424

ISBN-13: 981198218X

DOWNLOAD EBOOK

This book emphasizes on cutting-edge next-generation smart plant breeding approaches for maximizing the use of genomic resources generated by high-throughput genomics in the post-genomic era. Through this book the readers would learn about the recent development in the genomic approaches such as genotype by sequencing (GBS) for genomic analysis (SNPs, Single Nucleotide Polymorphism), whole-genome re-sequencing (WGRS) and RNAseq for transcriptomic analysis (DEGs, Differentially Expressed Genes). To maximize the genetic gains in the cereal/food crops, the book covers topics on transgenic breeding, genome editing, high-throughput phenotyping, reliable/precision phenotyping and genomic information-based analysis. In the era of climate change and the ever-increasing population, food security and nutritional security are the primary concern of plant breeders, growers, and policymakers to address the UN’s sustainable development goals. Chapters of this book cohere around these goals and covers techniques such as (QTL mapping, association studies, candidate gene identification), omics, RNAi [through micro RNA (miRNA), small interfering RNA (siRNA) and artificial micro RNA (amiRNA)]. It also covers other genomic techniques like antisense technology, genome editing (CRISPR/cas9, base editing) and epigenomics that assist the crop improvement programmes to fulfil the UNs sustainable development goals. It explores the influence of rapidly available sequencing data assisting in the next generation breeding programmes. This volume is a productive resource for the students, researchers, scientists, teachers, public and private sector stakeholders involved in the genetic enhancement of cereal crops.


Plant Genetics and Molecular Biology

Plant Genetics and Molecular Biology

Author: Rajeev K. Varshney

Publisher: Springer

Published: 2018-09-04

Total Pages: 306

ISBN-13: 3319913131

DOWNLOAD EBOOK

This book reviews the latest advances in multiple fields of plant biotechnology and the opportunities that plant genetics, genomics and molecular biology have offered for agriculture improvement. Advanced technologies can dramatically enhance our capacity in understanding the molecular basis of traits and utilizing the available resources for accelerated development of high yielding, nutritious, input-use efficient and climate-smart crop varieties. In this book, readers will discover the significant advances in plant genetics, structural and functional genomics, trait and gene discovery, transcriptomics, proteomics, metabolomics, epigenomics, nanotechnology and analytical & decision support tools in breeding. This book appeals to researchers, academics and other stakeholders of global agriculture.


Marker-Assisted Plant Breeding: Principles and Practices

Marker-Assisted Plant Breeding: Principles and Practices

Author: B.D. Singh

Publisher: Springer

Published: 2015-06-26

Total Pages: 542

ISBN-13: 8132223160

DOWNLOAD EBOOK

Marker-assisted plant breeding involves the application of molecular marker techniques and statistical and bioinformatics tools to achieve plant breeding objectives in a cost-effective and time-efficient manner. This book is intended for beginners in the field who have little or no prior exposure to molecular markers and their applications, but who do have a basic knowledge of genetics and plant breeding, and some exposure to molecular biology. An attempt has been made to provide sufficient basic information in an easy-to-follow format, and also to discuss current issues and developments so as to offer comprehensive coverage of the subject matter. The book will also be useful for breeders and research workers, as it offers a broad range of up-to-the-year information, including aspects like the development of different molecular markers and their various applications. In the first chapter, the field of marker-assisted plant breeding is introduced and placed in the proper perspective in relation to plant breeding. The next three chapters describe the various molecular marker systems, while mapping populations and mapping procedures including high-throughput genotyping are discussed in the subsequent five chapters. Four chapters are devoted to various applications of markers, e.g. marker-assisted selection, genomic selection, diversity analysis, finger printing and positional cloning. In closing, the last two chapters provide information on relevant bioinformatics tools and the rapidly evolving field of phenomics.


Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools

Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools

Author: Jameel M. Al-Khayri

Publisher: Springer

Published: 2016-02-02

Total Pages: 656

ISBN-13: 3319225219

DOWNLOAD EBOOK

The basic concept of this book is to examine the use of innovative methods augmenting traditional plant breeding towards the development of new crop varieties under different environmental conditions to achieve sustainable food production. This book consists of two volumes: Volume 1 subtitled Breeding, Biotechnology and Molecular Tools and Volume 2 subtitled Agronomic, Abiotic and Biotic Stress Traits. This is Volume 1 which consists of 21 chapters covering domestication and germplasm utilization, conventional breeding techniques and the role of biotechnology. In addition to various biotechnological applications in plant breeding, it includes functional genomics, mutations and methods of detection, and molecular markers. In vitro techniques and their applications in plant breeding are discussed with an emphasis on embryo rescue, somatic cell hybridization and somaclonal variation. Other chapters cover haploid breeding, transgenics, cryogenics and bioinformatics.


Plant Breeding: Past, Present and Future

Plant Breeding: Past, Present and Future

Author: John E. Bradshaw

Publisher: Springer

Published: 2016-03-08

Total Pages: 710

ISBN-13: 3319232851

DOWNLOAD EBOOK

This book aims to help plant breeders by reviewing past achievements, currently successful practices, and emerging methods and techniques. Theoretical considerations are also presented to strike the right balance between being as simple as possible but as complex as necessary. The United Nations predicts that the global human population will continue rising to 9.0 billion by 2050. World food production will need to increase between 70-100 per cent in just 40 years. First generation bio-fuels are also using crops and cropland to produce energy rather than food. In addition, land area used for agriculture may remain static or even decrease as a result of degradation and climate change, despite more land being theoretically available, unless crops can be bred which tolerate associated abiotic stresses. Lastly, it is unlikely that steps can be taken to mitigate all of the climate change predicted to occur by 2050, and beyond, and hence adaptation of farming systems and crop production will be required to reduce predicted negative effects on yields that will occur without crop adaptation. Substantial progress will therefore be required in bridging the yield gap between what is currently achieved per unit of land and what should be possible in future, with the best farming methods and best storage and transportation of food, given the availability of suitably adapted cultivars, including adaptation to climate change. My book is divided into four parts: Part I is an historical introduction; Part II deals with the origin of genetic variation by mutation and recombination of DNA; Part III explains how the mating system of a crop species determines the genetic structure of its landraces; Part IV considers the three complementary options for future progress: use of sexual reproduction in further conventional breeding, base broadening and introgression; mutation breeding; and genetically modified crops.


Molecular Plant Breeding

Molecular Plant Breeding

Author: Yunbi Xu

Publisher: CABI

Published: 2010

Total Pages: 756

ISBN-13: 1845936248

DOWNLOAD EBOOK

Recent advances in plant genomics and molecular biology have revolutionized our understanding of plant genetics, providing new opportunities for more efficient and controllable plant breeding. Successful techniques require a solid understanding of the underlying molecular biology as well as experience in applied plant breeding. Bridging the gap between developments in biotechnology and its applications in plant improvement, Molecular Plant Breeding provides an integrative overview of issues from basic theories to their applications to crop improvement including molecular marker technology, gene mapping, genetic transformation, quantitative genetics, and breeding methodology.