Plant Biomass Conversion

Plant Biomass Conversion

Author: Elizabeth E. Hood

Publisher: John Wiley & Sons

Published: 2011-01-20

Total Pages: 376

ISBN-13: 0470959096

DOWNLOAD EBOOK

A whole host of motivations are driving the development of the “renewables” industry— ranging from the desire to develop sustainable energy resources to the reduction of dangerous greenhouse gases that contribute to global warming. All energy utilized on the earth is ultimately derived from the sun through photosynthesis—the only truly renewable commodity. As concerns regarding increasing energy prices, global warming and renewable resources continue to grow, so has scientific discovery into agricultural biomass conversion. Plant Biomass Conversion addresses both the development of plant biomass and conversion technology, in addition to issues surrounding biomass conversion, such as the affect on water resources and soil sustainability. This book also offers a brief overview of the current status of the industry and examples of production plants being used in current biomass conversion efforts.


Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals

Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals

Author: Charles E. Wyman

Publisher: John Wiley & Sons

Published: 2013-05-28

Total Pages: 597

ISBN-13: 0470972025

DOWNLOAD EBOOK

Plant biomass is attracting increasing attention as a sustainable resource for large-scale production of renewable fuels and chemicals. However, in order to successfully compete with petroleum, it is vital that biomass conversion processes are designed to minimize costs and maximize yields. Advances in pretreatment technology are critical in order to develop high-yielding, cost-competitive routes to renewable fuels and chemicals. Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals presents a comprehensive overview of the currently available aqueous pretreatment technologies for cellulosic biomass, highlighting the fundamental chemistry and biology of each method, key attributes and limitations, and opportunities for future advances. Topics covered include: • The importance of biomass conversion to fuels • The role of pretreatment in biological and chemical conversion of biomass • Composition and structure of biomass, and recalcitrance to conversion • Fundamentals of biomass pretreatment at low, neutral and high pH • Ionic liquid and organosolv pretreatments to fractionate biomass • Comparative data for application of leading pretreatments and effect of enzyme formulations • Physical and chemical features of pretreated biomass • Economics of pretreatment for biological processing • Methods of analysis and enzymatic conversion of biomass streams • Experimental pretreatment systems from multiwell plates to pilot plant operations This comprehensive reference book provides an authoritative source of information on the pretreatment of cellulosic biomass to aid those experienced in the field to access the most current information on the topic. It will also be invaluable to those entering the growing field of biomass conversion.


Biomass Conversion

Biomass Conversion

Author: Chinnappan Baskar

Publisher: Springer Science & Business Media

Published: 2012-05-08

Total Pages: 484

ISBN-13: 3642284183

DOWNLOAD EBOOK

The consumption of petroleum has surged during the 20th century, at least partially because of the rise of the automobile industry. Today, fossil fuels such as coal, oil, and natural gas provide more than three quarters of the world's energy. Unfortunately, the growing demand for fossil fuel resources comes at a time of diminishing reserves of these nonrenewable resources. The worldwide reserves of oil are sufficient to supply energy and chemicals for only about another 40 years, causing widening concerns about rising oil prices. The use of biomass to produce energy is only one form of renewable energy that can be utilized to reduce the impact of energy production and use on the global environment. Biomass can be converted into three main products such as energy, biofuels and fine chemicals using a number of different processes. Today, it is a great challenge for researchers to find new environmentally benign methodology for biomass conversion, which are industrially profitable as well. This book focuses on the conversion of biomass to biofuels, bioenergy and fine chemicals with the interface of biotechnology, microbiology, chemistry and materials science. An international scientific authorship summarizes the state-of-the-art of the current research and gives an outlook on future developments.


Biomass Recalcitrance

Biomass Recalcitrance

Author: Michael Himmel

Publisher: Wiley-Blackwell

Published: 2008-06-23

Total Pages: 552

ISBN-13:

DOWNLOAD EBOOK

This book examines the connection between biomass structure, ultrastructure, and composition, to resistance to enzymatic deconstruction, with the aim of discovering new cost-effective technologies for biorefineries. It contains chapters on topics extending from the highest levels of biorefinery design and biomass life-cycle analysis, to detailed aspects of plant cell wall structure, chemical treatments, enzymatic hydrolysis, and product fermentation options."--Pub. desc.


Bioprospecting of Plant Biodiversity for Industrial Molecules

Bioprospecting of Plant Biodiversity for Industrial Molecules

Author: Santosh Kumar Upadhyay

Publisher: John Wiley & Sons

Published: 2021-06-22

Total Pages: 468

ISBN-13: 111971723X

DOWNLOAD EBOOK

BIOPROSPECTING OF PLANT BIODIVERSITY FOR INDUSTRIAL MOLECULES A comprehensive collection of recent translational research on bioresource utilization and ecological sustainability Bioprospecting of Plant Biodiversity for Industrial Molecules provides an up-to-date overview of the ongoing search for biodiverse organic compounds for use in pharmaceuticals, bioceuticals, agriculture, and other commercial applications. Bringing together work from a panel of international contributors, this comprehensive monograph covers natural compounds of plants, endophyte enzymes and their applications in industry, plant bioprospecting in cosmetics, marine bioprospecting of seaweeds, and more. Providing global perspectives on bioprospecting of plant biodiversity, the authors present research on enzymes, mineral micro-nutrients, biopesticides, algal biomass, and other bioactive molecules. In-depth chapters assess the health impacts and ecological sustainability of the various biomolecules and identify existing and possible applications ranging from ecological restoration to production of essential oils and cosmetics. Other topics include, bio-energy crops as alternative fuel resources, the role of plants in phytoremediation of industrial waste, and the industrial applications of endophyte enzymes. This comprehensive resource: Includes a through introduction to plant biodiversity and bioprospecting Will further the knowledge of application of different plants and improve research investigation techniques. Summarizes novel approaches for researchers in food science, microbiology, biochemistry, and biotechnology Bioprospecting of Plant Biodiversity for Industrial Molecules is an indispensable compendium of biological research for scientists, researchers, graduate and postgraduate students, and academics in the areas of microbiology, food biotechnology, industrial microbiology, plant biotechnology, and microbial biotechnology.


Biomass for Renewable Energy, Fuels, and Chemicals

Biomass for Renewable Energy, Fuels, and Chemicals

Author: Donald L. Klass

Publisher: Elsevier

Published: 1998-07-06

Total Pages: 669

ISBN-13: 0080528058

DOWNLOAD EBOOK

Biomass for Renewable Energy, Fuels, and Chemicals serves as a comprehensive introduction to the subject for the student and educator, and is useful for researchers who are interested in the technical details of biomass energy production. The coverage and discussion are multidisciplinary, reflecting the many scientific and engineering disciplines involved. The book will appeal to a broad range of energy professionals and specialists, farmers and foresters who are searching for methods of selecting, growing, and converting energy crops, entrepreneurs who are commercializing biomass energy projects, and those involved in designing solid and liquid waste disposal-energy recovery systems. Presents a graduated treatment from basic principles to the details of specific technologies Includes a critical analysis of many biomass energy research and commercialization activities Proposes several new technical approaches to improve efficiencies, net energy production, and economics Reviews failed projects, as well as successes, and methods for overcoming barriers to commercialization Written by a leader in the field with 40 years of educational, research, and commercialization experience


Advances in 2nd Generation of Bioethanol Production

Advances in 2nd Generation of Bioethanol Production

Author: Xin Lu

Publisher: Woodhead Publishing

Published: 2021-01-29

Total Pages: 266

ISBN-13: 0128188626

DOWNLOAD EBOOK

Advances in 2nd Generation of Bioethanol Production presents a comprehensive overview of technologies and strategies for the conversion of lignocellulosic biomass. This includes issues like sustainable production, environmental and economic benefits, and the main hurdles for upscaling and achieving commercial viability. The book assesses the current biomass conversion technologies, their readiness level for commercial production, and applications of bioethanol in bioenergy and chemical feedstock. The essential conversion process of 2nd generation biofuels, including feedstock composition and pretreatment, is then broken down, with special focus on advantages and pitfalls of each feedstock and process. It also explores the advances and challenges of bioprocessing, hydrolysis technologies and simultaneous fermentation of pentose and hexose. Finally, it presents the current status and bottlenecks for industrial production of bioethanol, as well as its future prospects. Its interdisciplinary approach, drawing upon plant biology, chemistry, biochemistry, microbiology, and genetics, makes Advances in 2nd Generation of Bioethanol Production a must-have reference for researchers in academia and industry R&D. It allows them to compare challenges and opportunities of new technologies and identify the gaps where new technology is needed. Practitioners in the industry also benefit from the information on working principles, design and control of the bioethanol production process, highlighting areas where technology innovation and investment should be placed. Graduate students and researchers newly entered in this field find here a key-resource to thoroughly understand the process as well as the fundamentals of bioethanol and bioproducts production from lignocellulosic biomass. Presents fundamentals and state-of-the-art of available pathways for bioethanol and bioproducts production from lignocellulosic biomass Discusses key-challenges for large scale production of bioethanol, such as pretreatment and hydrolysis Covers the specificities of various feedstocks and processes, the role of microorganisms in fermentation, saccharification limitations and challenges in the C5 and C6 fermentation


Energy from Organic Materials (Biomass)

Energy from Organic Materials (Biomass)

Author: Martin Kaltschmitt

Publisher: Springer

Published: 2018-07-21

Total Pages: 0

ISBN-13: 9781493978120

DOWNLOAD EBOOK

This comprehensive reference is a state-of-the-art survey of biomass as an energy carrier for the provision of heat, electricity, and transportation fuel, considering technical, economic, environmental, and social aspects. On a global scale, biomass contributes roughly 12 to 16 % of the energy needed to cover the overall primary energy consumption. Thus far, it is humanity’s most important source of renewable energy, used on practically all continents and growing in importance even in industrialized nations. With detailed coverage of the production of solid, gaseous and liquid fuels, as well as a final energy provision, this volume serves as an introduction for readers just entering the field, but also offers new insights, up-to-date information, as well as latest findings for advanced researchers, industry experts, and decision makers.


Greenhouse Gas Balances of Bioenergy Systems

Greenhouse Gas Balances of Bioenergy Systems

Author: Patricia Thornley

Publisher: Academic Press

Published: 2017-11-27

Total Pages: 288

ISBN-13: 0128094583

DOWNLOAD EBOOK

Greenhouse Gases Balance of Bioenergy Systems covers every stage of a bioenergy system, from establishment to energy delivery, presenting a comprehensive, multidisciplinary overview of all the relevant issues and environmental risks. It also provides an understanding of how these can be practically managed to deliver sustainable greenhouse gas reductions. Its expert chapter authors present readers to the methods used to determine the greenhouse gas balance of bioenergy systems, the data required and the significance of the results obtained. It also provides in-depth discussion of key issues and uncertainties, such as soil, agriculture, forestry, fuel conversion and emissions formation. Finally, international case studies examine typical GHG reduction levels for different systems and highlight best practices for bioenergy GHG mitigation. For bringing together into one volume information from several different fields that was up until now scattered throughout many different sources, this book is ideal for researchers, graduate students and professionals coming into the bioenergy field, no matter their previous background. It will be particularly useful for bioenergy researchers seeking to calculate greenhouse gas balances for systems they are studying. I will also be an important resource for policy makers and energy analysts. - Uses a multidisciplinary approach to synthesize the diverse information that is required to competently execute GHG balances for bioenergy systems - Presents an in-depth understanding of the science underpinning key issues and uncertainty in GHG assessments of bioenergy systems - Includes case studies that examine ways to maximize the GHG reductions delivered by different bioenergy systems


Bioenergy Research: Advances and Applications

Bioenergy Research: Advances and Applications

Author: Vijai G. Gupta

Publisher: Newnes

Published: 2013-12-05

Total Pages: 513

ISBN-13: 0444595643

DOWNLOAD EBOOK

Bioenergy Research: Advances and Applications brings biology and engineering together to address the challenges of future energy needs. The book consolidates the most recent research on current technologies, concepts, and commercial developments in various types of widely used biofuels and integrated biorefineries, across the disciplines of biochemistry, biotechnology, phytology, and microbiology. All the chapters in the book are derived from international scientific experts in their respective research areas. They provide you with clear and concise information on both standard and more recent bioenergy production methods, including hydrolysis and microbial fermentation. Chapters are also designed to facilitate early stage researchers, and enables you to easily grasp the concepts, methodologies and application of bioenergy technologies. Each chapter in the book describes the merits and drawbacks of each technology as well as its usefulness. The book provides information on recent approaches to graduates, post-graduates, researchers and practitioners studying and working in field of the bioenergy. It is an invaluable information resource on biomass-based biofuels for fundamental and applied research, catering to researchers in the areas of bio-hydrogen, bioethanol, bio-methane and biorefineries, and the use of microbial processes in the conversion of biomass into biofuels. - Reviews all existing and promising technologies for production of advanced biofuels in addition to bioenergy policies and research funding - Cutting-edge research concepts for biofuels production using biological and biochemical routes, including microbial fuel cells - Includes production methods and conversion processes for all types of biofuels, including bioethanol and biohydrogen, and outlines the pros and cons of each