Aviation Safety and Pilot Control

Aviation Safety and Pilot Control

Author: National Research Council

Publisher: National Academies Press

Published: 1997-03-28

Total Pages: 221

ISBN-13: 0309056888

DOWNLOAD EBOOK

Adverse aircraft-pilot coupling (APC) events include a broad set of undesirable and sometimes hazardous phenomena that originate in anomalous interactions between pilots and aircraft. As civil and military aircraft technologies advance, interactions between pilots and aircraft are becoming more complex. Recent accidents and other incidents have been attributed to adverse APC in military aircraft. In addition, APC has been implicated in some civilian incidents. This book evaluates the current state of knowledge about adverse APC and processes that may be used to eliminate it from military and commercial aircraft. It was written for technical, government, and administrative decisionmakers and their technical and administrative support staffs; key technical managers in the aircraft manufacturing and operational industries; stability and control engineers; aircraft flight control system designers; research specialists in flight control, flying qualities, human factors; and technically knowledgeable lay readers.


Controlling Aircraft—From Humans to Autonomous Systems

Controlling Aircraft—From Humans to Autonomous Systems

Author: Aharon David

Publisher: SAE International

Published: 2024-09-25

Total Pages: 38

ISBN-13: 146860855X

DOWNLOAD EBOOK

Paris, June 18, 1914: Crowds gathered at the “Concours de la Sécurité en Aéroplane” to witness 21-year-old Lawrence Sperry demonstrate his newly invented gyroscopic stabilizer. With his hands in the air, the device flew his Curtiss C-2 flying boat. Only a decade after the Wright brothers’ initial flight, the first n “autopilot” made its public debut. As impressive as this public demonstration was, it was merely a humble, although spectacular moment of foreshadowing. Even today—110 years later—the process of automating aspects of flight has not yet fully concluded, leading to deteriorating insight into the automatic behavior of aircraft systems, and even the waning of human instincts and intuition. Controlling Aircraft—From Humans to Autonomous Systems: Rise of the Machines covers the distancing of humans from their flying machines through more than a century-long process of “assisting” systems introduction, the positive and negative consequences of this process, and mitigation solutions for the negative consequences. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2024020


Aviation Safety and Pilot Control

Aviation Safety and Pilot Control

Author: Committee on the Effects of Aircraft-Pilot Coupling on Flight Safety

Publisher: National Academies Press

Published: 1997-03-14

Total Pages: 221

ISBN-13: 0309596777

DOWNLOAD EBOOK

Adverse aircraft-pilot coupling (APC) events include a broad set of undesirable and sometimes hazardous phenomena that originate in anomalous interactions between pilots and aircraft. As civil and military aircraft technologies advance, interactions between pilots and aircraft are becoming more complex. Recent accidents and other incidents have been attributed to adverse APC in military aircraft. In addition, APC has been implicated in some civilian incidents. This book evaluates the current state of knowledge about adverse APC and processes that may be used to eliminate it from military and commercial aircraft. It was written for technical, government, and administrative decisionmakers and their technical and administrative support staffs; key technical managers in the aircraft manufacturing and operational industries; stability and control engineers; aircraft flight control system designers; research specialists in flight control, flying qualities, human factors; and technically knowledgeable lay readers.


Breaking the Mishap Chain

Breaking the Mishap Chain

Author: Peter W. Merlin

Publisher: Government Printing Office

Published:

Total Pages: 248

ISBN-13: 9780160915635

DOWNLOAD EBOOK

This volume contains a collection of case studies of mishaps involving experimental aircraft, aerospace vehicles, and spacecraft in which human factors played a significant role. In all cases the engineers involved, the leaders and managers, and the operators (i.e., pilots and astronauts) were supremely qualified and by all accounts superior performers. Such accidents and incidents rarely resulted from a single cause but were the outcome of a chain of events in which altering at least one element might have prevented disaster. As such, this work is most certainly not an anthology of blame. It is offered as a learning tool so that future organizations, programs, and projects may not be destined to repeat the mistakes of the past. These lessons were learned at high material and personal costs and should not be lost to the pages of history.


Airplane Stability and Control

Airplane Stability and Control

Author: Malcolm J. Abzug

Publisher: Cambridge University Press

Published: 2002-09-23

Total Pages: 417

ISBN-13: 1107320194

DOWNLOAD EBOOK

From the early machines to today's sophisticated aircraft, stability and control have always been crucial considerations. In this second edition, Abzug and Larrabee again forge through the history of aviation technologies to present an informal history of the personalities and the events, the art and the science of airplane stability and control. The book includes never-before-available impressions of those active in the field, from pre-Wright brothers airplane and glider builders through to contemporary aircraft designers. Arranged thematically, the book deals with early developments, research centers, the effects of power on stability and control, the discovery of inertial coupling, the challenge of stealth aerodynamics, a look toward the future, and much more. It is profusely illustrated with photographs and figures, and includes brief biographies of noted stability and control figures along with a core bibliography. Professionals, students, and aviation enthusiasts alike will appreciate this readable history of airplane stability and control.


Systems and Control in the Twenty-First Century

Systems and Control in the Twenty-First Century

Author: Christopher I. Byrnes

Publisher: Springer Science & Business Media

Published: 2013-12-11

Total Pages: 444

ISBN-13: 1461241200

DOWNLOAD EBOOK

The mathematical theory of networks and systems has a long, and rich history, with antecedents in circuit synthesis and the analysis, design and synthesis of actuators, sensors and active elements in both electrical and mechanical systems. Fundamental paradigms such as the state-space real ization of an input/output system, or the use of feedback to prescribe the behavior of a closed-loop system have proved to be as resilient to change as were the practitioners who used them. This volume celebrates the resiliency to change of the fundamental con cepts underlying the mathematical theory of networks and systems. The articles presented here are among those presented as plenary addresses, invited addresses and minisymposia presented at the 12th International Symposium on the Mathematical Theory of Networks and Systems, held in St. Louis, Missouri from June 24 - 28, 1996. Incorporating models and methods drawn from biology, computing, materials science and math ematics, these articles have been written by leading researchers who are on the vanguard of the development of systems, control and estimation for the next century, as evidenced by the application of new methodologies in distributed parameter systems, linear nonlinear systems and stochastic sys tems for solving problems in areas such as aircraft design, circuit simulation, imaging, speech synthesis and visionics.


Algorithmic Foundations of Robotics XII

Algorithmic Foundations of Robotics XII

Author: Ken Goldberg

Publisher: Springer Nature

Published: 2020-05-06

Total Pages: 942

ISBN-13: 3030430898

DOWNLOAD EBOOK

This book presents the outcomes of the 12th International Workshop on the Algorithmic Foundations of Robotics (WAFR 2016). WAFR is a prestigious, single-track, biennial international meeting devoted to recent advances in algorithmic problems in robotics. Robot algorithms are an important building block of robotic systems and are used to process inputs from users and sensors, perceive and build models of the environment, plan low-level motions and high-level tasks, control robotic actuators, and coordinate actions across multiple systems. However, developing and analyzing these algorithms raises complex challenges, both theoretical and practical. Advances in the algorithmic foundations of robotics have applications to manufacturing, medicine, distributed robotics, human–robot interaction, intelligent prosthetics, computer animation, computational biology, and many other areas. The 2016 edition of WAFR went back to its roots and was held in San Francisco, California – the city where the very first WAFR was held in 1994. Organized by Pieter Abbeel, Kostas Bekris, Ken Goldberg, and Lauren Miller, WAFR 2016 featured keynote talks by John Canny on “A Guided Tour of Computer Vision, Robotics, Algebra, and HCI,” Erik Demaine on “Replicators, Transformers, and Robot Swarms: Science Fiction through Geometric Algorithms,” Dan Halperin on “From Piano Movers to Piano Printers: Computing and Using Minkowski Sums,” and by Lydia Kavraki on “20 Years of Sampling Robot Motion.” Furthermore, it included an Open Problems Session organized by Ron Alterovitz, Florian Pokorny, and Jur van den Berg. There were 58 paper presentations during the three-day event. The organizers would like to thank the authors for their work and contributions, the reviewers for ensuring the high quality of the meeting, the WAFR Steering Committee led by Nancy Amato as well as WAFR’s fiscal sponsor, the International Federation of Robotics Research (IFRR), led by Oussama Khatib and Henrik Christensen. WAFR 2016 was an enjoyable and memorable event.


Flight Dynamics

Flight Dynamics

Author: Robert F. Stengel

Publisher: Princeton University Press

Published: 2022-11-01

Total Pages: 912

ISBN-13: 0691220255

DOWNLOAD EBOOK

An updated and expanded new edition of an authoritative book on flight dynamics and control system design for all types of current and future fixed-wing aircraft Since it was first published, Flight Dynamics has offered a new approach to the science and mathematics of aircraft flight, unifying principles of aeronautics with contemporary systems analysis. Now updated and expanded, this authoritative book by award-winning aeronautics engineer Robert Stengel presents traditional material in the context of modern computational tools and multivariable methods. Special attention is devoted to models and techniques for analysis, simulation, evaluation of flying qualities, and robust control system design. Using common notation and not assuming a strong background in aeronautics, Flight Dynamics will engage a wide variety of readers, including aircraft designers, flight test engineers, researchers, instructors, and students. It introduces principles, derivations, and equations of flight dynamics as well as methods of flight control design with frequent reference to MATLAB functions and examples. Topics include aerodynamics, propulsion, structures, flying qualities, flight control, and the atmospheric and gravitational environment. The second edition of Flight Dynamics features up-to-date examples; a new chapter on control law design for digital fly-by-wire systems; new material on propulsion, aerodynamics of control surfaces, and aeroelastic control; many more illustrations; and text boxes that introduce general mathematical concepts. Features a fluid, progressive presentation that aids informal and self-directed studyProvides a clear, consistent notation that supports understanding, from elementary to complicated conceptsOffers a comprehensive blend of aerodynamics, dynamics, and controlPresents a unified introduction of control system design, from basics to complex methodsIncludes links to online MATLAB software written by the author that supports the material covered in the book


Advances in Therapeutic Engineering

Advances in Therapeutic Engineering

Author: Wenwei Yu

Publisher: CRC Press

Published: 2012-12-03

Total Pages: 499

ISBN-13: 1439871736

DOWNLOAD EBOOK

Therapeutic Engineering (TE) is a cutting-edge domain in today’s era of medical technology research. Through engineering algorithms that provide technological solutions, it aims to elevate the quality of life of disabled individuals. Advances in Therapeutic Engineering describes various therapeutic processes and mechanisms currently applied to the field of healthcare in a range of areas, including mobility, communications, hearing, vision, and mental health and cognition. The book explores research and advances in the areas of hand-eye coordination, motor function, the biomechanics of lower limbs, and treatment of spinal diseases and neural plasticity. It discusses electrical stimulation methodologies for improving human gait. It also examines prosthetic devices and assistive technology, induction heater-based treatment, and inclusive user modelling and simulation. Additional chapters cover automated asthma detection using clinico–spirometric information, computer-aided diagnostic modules for malaria screening, and various data mining techniques that have been developed and successfully implemented in healthcare management. The contributors also examine semantic interoperability issues in e-health systems and clinical decision support systems (CDSSs) Ranging from prosthetics to sensory substitution and medical robotics, the book will prove enlightening to researchers and practitioners in a host of disciplines who want to understand the recent advances achieved globally in the field of therapeutic engineering.